留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期裂纹削弱的无限长板条的应力分析

陈宜周

陈宜周. 周期裂纹削弱的无限长板条的应力分析[J]. 应用数学和力学, 2004, 25(11): 1189-1194.
引用本文: 陈宜周. 周期裂纹削弱的无限长板条的应力分析[J]. 应用数学和力学, 2004, 25(11): 1189-1194.
CHEN Yi-zhou. Stress Analysis for an Infinite Strip Weakned by Periodic Cracks[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1189-1194.
Citation: CHEN Yi-zhou. Stress Analysis for an Infinite Strip Weakned by Periodic Cracks[J]. Applied Mathematics and Mechanics, 2004, 25(11): 1189-1194.

周期裂纹削弱的无限长板条的应力分析

基金项目: 国家自然科学基金资助项目(10272053)
详细信息
    作者简介:

    陈宜周(1935- ),男,浙江余姚人,教授,名古屋工业大学博士(Tel:+86-511-8780780;E-mail:yizhou922@yahoo.com.cn;chens@ujs.edu.cn).

  • 中图分类号: O346

Stress Analysis for an Infinite Strip Weakned by Periodic Cracks

  • 摘要: 作出了周期裂纹削弱的无限长板条的应力分析.假设这些裂纹均在水平位置,又板条承受 y方向的拉伸力p.此时边值问题归结为一个复杂混合边值问题.发现,对此问题言,特征展开变分原理方法 ( eigenfunction expansion variational method,简称为EEVM)是非常有效的.研究了裂纹端的应力强度因子和T-应力.从拉伸力作用下的弹性变形考虑,开裂板条可等价于一不开裂的正交异性板条.还分析了等价正交异性板条的弹性性质.最后给出了算例和数值结果.
  • [1] Savruk M P.Two-dimensional Problems of Elasticity for Body with Cracks[M].Kiev:Nauka Dumka,1981.
    [2] CHEN Yi-zhou.A survey of new integral equations in plane elasticity crack problem[J].Engng Fract Mech,1995,51(5):387—394.
    [3] CHEN Yi-zhou,Lee K Y.An infinite plate weakened by periodic cracks[J].J Appl Mech,2002,69(3):552—555. doi: 10.1115/1.1458558
    [4] Isida M,Usijima N,Kishine N.Rectangular plate,strips and wide plates containing internal cracks under various boundary conditions[J].Trans Japan Soc Mech Engrs,1981,47:27—35. doi: 10.1299/kikaia.47.27
    [5] Delameter W R,Herrmann G,Barnett D M. Weakening of elastic solid by a rectangular array of cracks[J].J Appl Mech,1975,42(1):74—80. doi: 10.1115/1.3423557
    [6] Parton V Z,Perlin P I.Integral Equations in Elasticity[M].Moscow: Mir,1982.
    [7] Benthem J P, Koiter W T. Asymptotic approximations to crack problems[A].In: G C Sih Ed.Mechanics of Fracture[C].1973,1:131—178.
    [8] Huang Y,Hu K X,Chandra A.Stiffness evaluation for solids containing dilute distributions of inclusions and microcracks[J].J Appl Mech,1995,62(1):71—77. doi: 10.1115/1.2895886
    [9] Kachanov M.Elastic solids with many cracks and related problems[A].In:J W Hutchinson,T Wu Eds.Advances in Applied Mechanics[C].1993,30:259—445.
    [10] CHEN Yi-zhou.An investigation of the stress intensity factor for a finite internally cracked plate by using variational method[J].Engng Fract Mech,1983,17(5):387—394. doi: 10.1016/0013-7944(83)90035-8
    [11] Wang W C, Chen J T. Stress analysis of finite interfacially cracked bimaterial plates by using variational method[J].Comput Methods Appl Mech Engrg,1989,73:153—171.
    [12] Muskhelishvili N I.Some Basic Problems in the Theory of Elasticity[M].Gronigen: Noordhoff, 1953.
    [13] CHEN Yi-zhou.Closed form solution of T-stress in plane elasticity crack problems[J].Internat J Solids and Structures,2000,37(11):1629—1637. doi: 10.1016/S0020-7683(98)00312-6
    [14] Lekhnitsky S G.Theory of Elasticity of Anisotropic Elastic Body[M].San Francisco: Holden-Day, 1963.
  • 加载中
计量
  • 文章访问数:  2036
  • HTML全文浏览量:  140
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-08-20
  • 修回日期:  2004-06-05
  • 刊出日期:  2004-11-15

目录

    /

    返回文章
    返回