摘要:
本文首先将B.B.方法[1]推广至二平行圆板间的径向扩散流动,由边界层运动方程式同时推导出动量积分方程式和能量积分方程式,而后再用Picard逐次逼近法[2]解能量积分方程式,求得进口段通道长随边界层厚度而改变的二级近似显函数表达式.从而为进口段效应诸系数的直接解析分析提供了可能.特别是当圆板外径小于进口段长度时,更加突出地表现了本方法的优越性.由于采用了能量积分方程式,则压力损失系数的各项才得以从理论上独立地推导出来.本文所提供的压力损失系数计算值,在进口修正雷诺数Re<100时,和文献[3]比较与实验值更为接近.因此在该范围内本文的结果既可靠又简便.
Abstract:
In this paper, B.B, Golubef method[1] is used for calculating the radial diffuse flow between two parallel disks for the first step, the momentum integral equation together with the energy integral equation is derived from the boundary layer momentum equation,then the expression of secondary approximation explicit function which is the entrance region duct length accompanied by the boundary layer thickness can be obtained by using Picard iteration[2] in the solution of the energy integral equatio,.Therefore, this has made it possible to analyze directly and analytically the coefficients of entrance region effect, Especially when the outer diameter of the disk is less than the entrance region length, the advantage of this method can be prominently shown.Because energy integral equation was employed, the terms in the pressure loss coefficient can only be independently derived theoretically.The computable value of the pressure loss coefficient presented in this paper is nearer to the testing value than ref.[3] when the entrance correction Reynolds number Re<100.Therefore, the results in this paper within Re<100 are both reliable and simple.