摘要:
柱形弹体对刚性靶体的纵向撞击塑性变形理论是G.I.泰勒[1]首先提出的.这个理论的重要性在于通过这个理论可以从实验数据计算动力屈服强度,而且从实验结果[2]中看到,动力屈服强度和撞击速度无关,动力屈服强度高于静力屈服强度,对某些材料而言,可以超出好几倍.这样就为弹塑性撞击研究提供了一个重要的根据.但是,泰勒理论由于微分方程的复杂性,求解过程都是数值计算,这样对使用其结果时深感不便.本文提供了全部分析解,并对其结果进行了讨论.本文对冲量计算进行了修正,修正理论的分析解指出,其结果比泰勒理论的解更加符合实验[2].
Abstract:
The theory of plastic deformation in the impact of cylindrical projectiles on rigid targets was first introduced by G. I. Taylor(1948)[1]. The importance of this theory lies in the fact that the dynamic yield strength of the materials can be determined from the measurement of the plastic deformation of flat-ended cylindrical projectiles. From the experimental results[2] we find that the dynamic yield strength is independent of impact velocity, and that it is higher than the static yield strength in general, and several times higher than the static yield strength in certain cases. This gives an important foundation for the study of elastoplastic impact problems in general. However, it is well known that the complexity of differential equations in Taylor's theory compelled us to use the troublesome numerical solution. In this paper, the analytical solution of all the equations in Taylor's theory is given in parametrical form and the results are discussed in detail.In the latter part of this paper, the method of calculation of impulse of impact is improved by considering the processes of radial' movement of materials. The analytical solution of the improved theory shows that it gives better agreement with the experimental results than that of original Taylor's theory.