留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于复模态参数的冗余性

陈奎孚 焦群英

陈奎孚, 焦群英. 关于复模态参数的冗余性[J]. 应用数学和力学, 2004, 25(12): 1292-1298.
引用本文: 陈奎孚, 焦群英. 关于复模态参数的冗余性[J]. 应用数学和力学, 2004, 25(12): 1292-1298.
CHEN Kui-fu, JIAO Qun-ying. On the Redundancy of Complex Modal Parameters[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1292-1298.
Citation: CHEN Kui-fu, JIAO Qun-ying. On the Redundancy of Complex Modal Parameters[J]. Applied Mathematics and Mechanics, 2004, 25(12): 1292-1298.

关于复模态参数的冗余性

详细信息
    作者简介:

    陈奎孚(1969- ),江苏宿迁人,讲师,博士;焦群英,教授,博士(联系人.Tel:+86-10-62376411;Fax:+86-10-62376777;E-mail:jiaoqy@cau.edu.cn).

  • 中图分类号: TN911.72

On the Redundancy of Complex Modal Parameters

  • 摘要: 生成仿真传递函数是考核模态识别算法和评估模态分析软件的不可缺少的环节.比较可行的3种计算方案表明:若选择将传递函数表示为复模态参数的展开式,则可以自由设定仿真模态的特性,如密频、大阻尼和复模态;然而,即使采用这种格式也不能随意设置一组复模态振型,因为这种格式的表观参数个数大于物理参数个数;故而,若对应的物理参数有意义,那么复模态参数必须满足一组约束关系.通过分析复模态系统的特征值问题,和复模态参数反演物理参数的方程式,给出了复模态参数间的一组非线性冗余约束.讨论了实模态、无阻尼和不完全模态等特殊情形的冗余约束具体形式与独立参数的个数,值得注意的是,对于实模态系统,冗余约束自动满足.给出冗余约束在传递函数矩阵和一列传递函数上的等价形式.这些结果有助于产生仿真传递函数,实施优化型识别算法,以及评估识别结果;还可用来评价残余模态和识别完整性.
  • [1] He J M,Fu Z F.Modal Analysis[M].Oxford,England:Butterworth-Heinemann, 2001.
    [2] Ewins D J.Modal Testing: Theory, Practice and Application[M].Hertfordshire England:Research Studies Press Limited,1999.
    [3] Silva J M,Maia N M.Theoretical and Experimental Modal Analysis[M].Hertfordshire England:Research Studies Press Limited,1998.
    [4] 许本文,焦群英.机械震动与模态分析基础[M].北京:机械工业出版社,1998.
    [5] 陆秋海,李德葆.模态理论的进展[J].力学进展,1996,26(4):464—472.
    [6] Hasselman T K, Chrostowski J D, Pappa R.Estimation of full modal damping matrices from complex test modes[A].In:The 34th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference[C].La Jolla, CA, USA,1993,3388—3394.
    [7] Gladwell G M L.On the reconstruction of a damped vibrating system from two complex spectra—Part 1: Theory[J].J Sound Vibration,2001,240(2):203—217. doi: 10.1006/jsvi.2000.3213
    [8] Foltete E, Gladwell G M L. On the reconstruction of a damped vibrating system from two complex spectra—Part 2:Experiment[J].J Sound Vibration,2001,240(2):219—240. doi: 10.1006/jsvi.2000.3214
    [9] Rosa L F L,Magluta C,Roitman N.Modal parameters estimation using an optimization technique[A].In:A L Wicks Ed.Proceedings of the 15th International Modal Analysis Conference[C].IMAC. Part 1 (of 2).Orlando,FL,USA.Bethel:Society of Experimental Mechanics,1997,540—544.
    [10] Rosa L F L,Magluta C, Roitman N. Estimation of modal parameters through a non-linear optimisation technique[J].Mechanical Systems and Signal Processing,1999,13(4):593—607. doi: 10.1006/mssp.1998.1207
    [11] Garvey S D, Friswell M I, Penny J E.Efficient component mode synthesis with non-classically damped (sub-) structures[A].In:A L Wicks Ed.Proceedings of the 1998 16th International Modal Analysis Conference[C].Part 2 (of 2).Santa Barbara, CA,USA.Bethel:Society of Experimental Mechanics,1998,1602—1608.
    [12] Garvey S D, Penny J E, Friswell M I. The relationship between the real and imaginary parts of complex modes[J].J Sound Vibration,1998,212(1):75—83. doi: 10.1006/jsvi.1997.1377
    [13] 李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001,78—87.
    [14] Zwillinger D.Standard Mathematical Tables and Formulae[M].Florida,USA:CRC Press,1996,130—134.
    [15] 杨路,张景中,侯晓荣.非线性代数方程与定理机器证明[M].上海:上海科技教育出版社,1996.
    [16] Caughey T K,O'kelly M J.Classical normal modes in damped linear dynamics systems[J].ASME Journal of Applied Mechanics,1965,32(2):583—588. doi: 10.1115/1.3627262
    [17] Liu K F, Kujath M R. Zheng W P. Quantification of non-proportionality of damping in discrete vibratory systems[J].Computers and Structures,2000,77(5):557—569. doi: 10.1016/S0045-7949(99)00230-8
    [18] Levy E C. Complex-curve fitting[J].IEEE Transactions on Automatic Control,1959,4(1):37—44. doi: 10.1109/TAC.1959.1104874
    [19] Fahey S O F, Pratt J. Frequency domain modal estimation techniques[J].Experimental Techniques,1998,22(5):33—37. doi: 10.1111/j.1747-1567.1998.tb02320.x
    [20] Ruotolo R, Storer D M.Global smoothing technique for FRF data fitting[J].J Sound Vibration,2001,239(1):41—56. doi: 10.1006/jsvi.2000.3155
    [21] Formenti D, Richardson M.Parameter estimation from frequency response measurements using rational fraction polynomials (twenty years of progress)[A].In:A L Wicks Ed.Proceedings of the 20th International Modal Analysis Conference: A Conference on Structural Dynamics[C].Los Angeles, CA,USA.Bethel:Society of Experimental Mechanics,2002,373—382.
  • 加载中
计量
  • 文章访问数:  2542
  • HTML全文浏览量:  120
  • PDF下载量:  1127
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-01-15
  • 修回日期:  2004-07-06
  • 刊出日期:  2004-12-15

目录

    /

    返回文章
    返回