[1] |
刘曾荣.混沌的微扰判据[M].上海:上海科技教育出版社,1994: 7—10.
|
[2] |
Moon F C, Holmes W T.Double Poincare sections of a quasi-periodically forced, chaotic attractor[J].Physics Letters A,1985,111(4):157—160. doi: 10.1016/0375-9601(85)90565-1
|
[3] |
Wiggins S.Chaos in the quasiperiodically forced Duffing oscillator[J]. Physics Letters A,1987,124(3):138—142. doi: 10.1016/0375-9601(87)90240-4
|
[4] |
Wiggins S.Global Bifurcations and Chaos—Analytical Methods[M].New York: Springer-Verlag, 1988: 313—333.
|
[5] |
Kayo IDE, Wiggins S.The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator[J].Physica D,1989,34(1):169—182. doi: 10.1016/0167-2789(89)90232-7
|
[6] |
Heagy J, Ditto W L.Dynamics of a two-frequency parametrically driven Duffing oscillator[J].Journal of Nonlinear Science,1991,1(2):423—455. doi: 10.1007/BF02429848
|
[7] |
LU Qi-shao.Principle resonance of a nonlinear system with two-frequency parametric and self-excitations[J].Nonlinear Dynamics,1991,2(6):419—444. doi: 10.1007/BF00045437
|
[8] |
陆启韶、黄克累.非线性动力学、分岔和混沌[A].见:黄文虎,陈滨,王照林 编.一般力学(动力学、振动与控制)最新进展[C].北京:科学出版社,1994, 11—18.
|
[9] |
Yagasaki K, Sakata M,Kimura K.Dynamics of weakly nonlinear system subjected to combined parametric and external excitation [J].Trans ASME,Journal of Applied Mechanics,1990,57(1):209—217. doi: 10.1115/1.2888306
|
[10] |
Yagasaki K.Chaos in weakly nonlinear oscillator with parametric and external resonance[J].Trans ASME,Journal of Applied Mechanics,1991,58(1):244—250. doi: 10.1115/1.2897158
|
[11] |
Yagasaki K.Chaotic dynamics of a quasi-periodically forced beam[J].Trans ASME,Journal of Applied Mechanics,1992,59(1): 161—167. doi: 10.1115/1.2899422
|
[12] |
陈予恕,王德石.轴向激励下梁的混沌运动[J].非线性动力学学报,1993,1(2):124—135.
|
[13] |
Kapitaniak T.Combined bifurcations and transition to chaos in a nonlinear oscillator with two external periodic forces[J].Journal of Sound and Vibration,1988,121(2):259—268. doi: 10.1016/S0022-460X(88)80028-2
|
[14] |
Kapitaniak T.Chaotic distribution of nonlinear systems perturbed by random noise[J].Physical Letters A,1986,116(6):251—254. doi: 10.1016/0375-9601(86)90588-8
|
[15] |
Kapitaniak T.A property of a stochastic response with bifurcation to nonlinear system[J].Journal of Sound and Vibration,1986,107(1):177—180. doi: 10.1016/0022-460X(86)90292-0
|
[16] |
毕勤胜,陈予恕,吴志强.多频激励Duffing系统的分岔和混沌[J].应用数学和力学,1998,19(2):113—120.
|
[17] |
Leung A Y T, Fung C.Construction of chaotic regions [J].Journal of Sound and Vibration,1989,131(3): 445—455. doi: 10.1016/0022-460X(89)91004-3
|
[18] |
Stupnicka S,Bajkowski. The 1/2 subharmonic resonance its transition to chaos motion in a nonlinear oscillator[J].IFTR Reports,1986,4(1):67—72.
|
[19] |
Dooren R V.On the transition from regular to chaotic behaviour in the Duffing oscillator[J].Journal of Sound and Vibration,1988,123(2):327—339. doi: 10.1016/S0022-460X(88)80115-9
|
[20] |
Yagasaki K.Homoclinic tangles,phase locking,and chaos in a two-frequency perturbation of Duffing equation[J].Journal of Nonlinear Science,1999,9(1):131—148. doi: 10.1007/s003329900066
|