Critical Damping of the Second-Order Pendulum-Like Systems
-
摘要: 首先,分析了一具有特定非线性函数的二阶类摆系统的解的性质;进而,针对具有一般非线性形式的二阶类摆系统,利用微分方程的定性分析方法讨论了其总体性质,并由此给出了估算其临界阻尼的充分性条件.改进了Leonov等人的工作.
-
关键词:
- 类摆系统 /
- Lagrange稳定 /
- 类梯度 /
- 第二类极限环
Abstract: First,the properties of solutions of a typical second-order pendulum-like system with a specified nonlinear function were dicussed.Then the case with a general form of nonlinearity is considered and its global properties were studied by using the qualitative theory of differential equations.As a result,sufficient conditions for estimating the critical damp are established,which improves the work by Leonov et al. -
[1] Leonov G A,Smirnova V B. Analysis of frequency-of-oscillations-controlled systems[A].In:St Petersbuvg,Ed.Proceedings of International Conference on Control of Oscillations and Chaos[C](Russia).1997,2:439—441. [2] Leonov G A,Tomayev A,Chshiyeva T.Stability of frequency-phase locked automatic frequency control systems[J].Soviet Journal of Communications Technology and Electronics,1992,37(11):1—9. [3] Tricomi F. Integrazione di unequazione differenziale presentatasi in electrotechnica[J].Annali Della Roma Scuola Normale Superiore de Pisa:Scienza Phys e Mat,1933,2:1—20. [4] Andronow A A,Chaikin C E.Theory of Oscillations[M].Princeton University Press, 1966. [5] Amerio L. Determinazione delle condizioni di stabilita per gli integrali di un'equazione ineressante I'elettrotacnica[J].Annali di Matematica Pura ed Applicata,1949,4(30):75—90. [6] Hayes W D. On the equation for a damped pendulum under constant torque[J].Z A M Ph,1953,4(5):398—401. doi: 10.1007/BF02074983 [7] Sansone G,Conti R.非线性微分方程[M].黄启昌,金成桴,史希福 译. 北京:科学出版社,1983. [8] Leonov G A,Ponomarenko D V,Smirnova V B.Frequency-Domain Methods for Nonlinear Analysis[M].Singapore: World Scientific, 1996. [9] Arie E,Botgros M,Halanay A,et al.Transient stability of the synchronous machine[J].Rev Roum Sci Techn Serie Electrotechn et Energy,1974,19(4):611—625.
计量
- 文章访问数: 2983
- HTML全文浏览量: 181
- PDF下载量: 594
- 被引次数: 0