留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电压磁复合材料中界面裂纹对弹性波的散射

周振功 王彪

周振功, 王彪. 压电压磁复合材料中界面裂纹对弹性波的散射[J]. 应用数学和力学, 2005, 26(1): 16-24.
引用本文: 周振功, 王彪. 压电压磁复合材料中界面裂纹对弹性波的散射[J]. 应用数学和力学, 2005, 26(1): 16-24.
ZHOU Zhen-gong, WANG Biao. Scattering of Harmonic Anti-Plane Shear Waves by an Interface Crack in Magneto-Electro-Elastic Composites[J]. Applied Mathematics and Mechanics, 2005, 26(1): 16-24.
Citation: ZHOU Zhen-gong, WANG Biao. Scattering of Harmonic Anti-Plane Shear Waves by an Interface Crack in Magneto-Electro-Elastic Composites[J]. Applied Mathematics and Mechanics, 2005, 26(1): 16-24.

压电压磁复合材料中界面裂纹对弹性波的散射

基金项目: 国家自然科学基金资助项目(50232030;10172030);黑龙江省自然科研基金资助项目(A0301)
详细信息
    作者简介:

    周振功(1963- ),河南镇平县人,教授,博士,博导(联系人.Tel:+86-451-86402396;Fax:+86-451-86418251;E-mail:zhouzhg@hit.edu.cn).

  • 中图分类号: O346.58

Scattering of Harmonic Anti-Plane Shear Waves by an Interface Crack in Magneto-Electro-Elastic Composites

  • 摘要: 利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题.经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程A·D2在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式.数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响A·D2从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同.
  • [1] Wu T L, Huang J H. Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and piezomagnetic phases[J].International Journal of Solids and Structures,2000,37(21):2981—3009. doi: 10.1016/S0020-7683(99)00116-X
    [2] Sih G C, Song Z F. Magnetic and electric poling effects associated with crack growth in BaTiO3-CoFe2O4 composite[J].Theoretical and Applied Fracture Mechanics,2003,39(3):209—227. doi: 10.1016/S0167-8442(03)00003-X
    [3] Song Z F, Sih G C. Crack initiation behavior in magnetoelectrioelastic composite under in-plane deformation[J].Theoretical and Applied Fracture Mechanics,2003,39(3):189—207. doi: 10.1016/S0167-8442(03)00002-8
    [4] Van Suchtelen J. Product properties: a new application of composite materials[J].Phillips Research Reports,1972,27(1):28—37.
    [5] Harshe G, Dougherty J P, Newnham R E. Theoretical modeling of 3-0/0-3 magnetoelectric composites[J].International Journal of Applied Electromagnetics in Materials,1993,4(1):161—171.
    [6] Avellaneda M, Harshe G. Magnetoelectric effect in piezoelectric/magnetostrictive multiplayer (2-2) composites[J].Journal of Intelligent Material Systems and Structures,1994,5(3):501—513. doi: 10.1177/1045389X9400500406
    [7] NAN Ce-wen. Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases[J].Physical Review B,1994,50(20): 6082—6088. doi: 10.1103/PhysRevB.50.6082
    [8] Benveniste Y. Magnetoelectric effect in fibrous composites with piezoelectric and magnetostrictive phases[J].Physical Review B,1995,51(8):16424—16427. doi: 10.1103/PhysRevB.51.16424
    [9] Huang J H, Kuo W S. The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions[J].Journal of Applied Physics, 1997,81(3):1378—1386. doi: 10.1063/1.363874
    [10] Li J Y. Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials[J].International Journal of Engineering Science,2000,38(18):1993—2011. doi: 10.1016/S0020-7225(00)00014-8
    [11] ZHOU Zhen-gong, SHEN Ya-peng.Investigation of the scattering of harmonic shear waves by two collinear cracks using the non-local theory[J].Acta Mechanica,1999,135(3/4):169—179. doi: 10.1007/BF01305750
    [12] ZHOU Zhen-gong, LI Hai-chen. Investigation of the scattering of anti-plane shear waves by two collinear cracks in a piezoelectric materials using a new method[J].Acta Mechanica,2001,147(1-4):87—97. doi: 10.1007/BF01182354
    [13] ZHOU Zhen-gong, Wang Biao. Investigation of anti-plane shear behavior of two collinear impermeable cracks in the piezoelectric materials by using the non-local theory[J].International Journal of Solids and Structures,2002,39(7):1731—1742. doi: 10.1016/S0020-7683(02)00003-3
    [14] Morse P M,Feshbach H.Methods of Theoretical Physics[M].Vol 1.New York:McGraw-Hill,1958,926.
    [15] Yan W F. Axisymmetric slipless indentation of an infinite elastic cylinder[J].SIAM Journal on Applied Mathematics,1967,15(2):219—227. doi: 10.1137/0115018
    [16] Gradshteyn I S, Ryzhik I M.Table of Integrals, Series and Products[M].New York:Academic Press,1980, 1035—1037.
    [17] Erdelyi A.Tables of Integral Transforms[M].New York: McGraw-Hill,1954,34—89.
  • 加载中
计量
  • 文章访问数:  2512
  • HTML全文浏览量:  124
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-10-30
  • 修回日期:  2004-09-08
  • 刊出日期:  2005-01-15

目录

    /

    返回文章
    返回