摘要:
本文在等刚度弹性圆环的初参数公式的基础上,利用[2]提出的阶梯折算法,进一步研究非均匀变截面弹性圆环的弯曲,得到了这类问题的通解,应当指出,这组通解对非均匀变截面圆柱拱的相应问题也是适用的.为验证所得的公式并说明这种方法的应用,文末给出了示例并进行了求解,圆环、圆拱是工程上经常采用的结构,它们的弯曲,Timoshenko,S.[5],Barber,J.R.[3],Roark,R J[4],津村利光[6]等曾作过很多研究.然而,迄今只求得了均匀材料、等截面圆环的通解。对变截面问题,仅仅求得了抗弯刚度是坐标的线性函数这一特殊情况的解.由于非均匀变截面问题常常导出变系数微分方程,它们的求解遇到很大的数学困难.本文通过阶梯折算法把非均匀变截面弹性圆环弯曲问题的变系数微分方程转化成一等效的等刚度圆环弯曲的常系数微分方程.为保证内力连续,引入虚拟内力,并以[1]导出的初参数公式为影响函数,通过积分构造出了非齐次解,从而求得了非均匀变截面弹性圆环弯曲问题的通解.
Abstract:
On the foundation of the initial parameter formulae of elastic circular ring with constant flexural rigidity,using the stepped reduction method, suggested in[2],we investigate the bending problem of non-homogeneous variable thickness elastic circular ring under arbitrarily distributed loads and obtain the general solution of this problem which is also suitable for the corresponding problem of non-homogeneous variable thickness cylindrical arch.In the end, an example is carried out to examine the gained formulae and assure the exactness of this method.