乏晰边界条件的弹性体静力问题的解和最小位能、余能原理
The Solution of the Problems in Elastostatics and the Principles of Least-Potential Energy and Least-Complementary Energy with Fuzzy Boundary Conditions
-
摘要: 本文把弹性力学静力问题的解定义在集合论基础上,并推广到乏晰边界条件情形.给出最小位能、余能原理在乏晰边界条件下新的推广,以及最小元位能解的存在和唯一性定理,从而证明弹性力学静力问题的拟解是存在的.Abstract: In this paper, the solution of the problems in elastostatics is defined on "Set Theory" and extended to fuzzy boundary conditions. Both of the principles of least-potential energy and least-complementary energy are also extended to fuzzy boundary conditions. A theorem of the existence and uniqueness of the solution of minimum elemental potential energy is given and thus the existence of a quasisolution of the problems in elastostatics is proved.
-
[1] 钱伟长著,变分法及有限元讲义,第三册,(1978年11月). [2] Negoita, C, V,,Ralescu, D.A.,Applications of Fuzzzy Sets to Systems Anadysis,(1975). [3] Amenzade Yu.A,,Theory of elasticity, MIR Publishers, Moscow, 94,(1979). [4] 吴学谋,乏晰性、可靠性与泛系分析,(I),(Ⅱ),华中工学院学报,第3, 4期,(1978年). [5] 江泽涵,《拓朴学引论》,(1979年). [6] Singer, 1.M,,Thorpe,J, A.,Lecture Notes on Elementary Topology and Geometry, (1976). [7] 云天铨,乏晰边界条件的弹性体静力问题注记,华中工学院学报,《乏晰数学专辑》(1980年4月).
计量
- 文章访问数: 1907
- HTML全文浏览量: 107
- PDF下载量: 623
- 被引次数: 0