留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沿两条内部平行裂纹受压时材料的断裂问题

A. N. 古兹 V. M. 那柴林柯 I. P. 斯太洛杜切夫

A. N. 古兹, V. M. 那柴林柯, I. P. 斯太洛杜切夫. 沿两条内部平行裂纹受压时材料的断裂问题[J]. 应用数学和力学, 1997, 18(6): 483-494.
引用本文: A. N. 古兹, V. M. 那柴林柯, I. P. 斯太洛杜切夫. 沿两条内部平行裂纹受压时材料的断裂问题[J]. 应用数学和力学, 1997, 18(6): 483-494.
A. N. Guz, V. M. Nazarenko, Ⅰ. P. Starodubtsev. On Problems of Fracture of Materials in Compression along Two Internal Parallel Cracks[J]. Applied Mathematics and Mechanics, 1997, 18(6): 483-494.
Citation: A. N. Guz, V. M. Nazarenko, Ⅰ. P. Starodubtsev. On Problems of Fracture of Materials in Compression along Two Internal Parallel Cracks[J]. Applied Mathematics and Mechanics, 1997, 18(6): 483-494.

沿两条内部平行裂纹受压时材料的断裂问题

On Problems of Fracture of Materials in Compression along Two Internal Parallel Cracks

  • 摘要: 顺着平面内的平行裂纹受压材料的断裂问题并不能在线性断裂力学的框架内进行描述,Grif-fith-Irvin型或COC型的断裂判据,虽然可以用来处理经典的线性断裂力学,但对本题则完全不适用,这是因为这些压力对应力强度系数没有影响,与裂缝孔隙值也没有关系[1,2],这一类问题只能采用新的方法,本文的第一作者曾建议过一种新方法,在这一方法中仍然使用了线性关系,但这种线性关系是从变形固体力学中的非线性方程导出的[3,4,5].这里必须指出,这种方法曾在变形体稳定性问题中广泛地采用过。作为断裂开始的判据,我们采用了裂缝缺陷附近的局部失稳的判据,在这类情况下,我们认为是从失稳过程引发断裂过程的。
  • [1] G.P.Chevepanov,Mechanics of Brittle Fracture,Nauka,Moscow (1974).
    [2] M.K.Kassir and G.C.Sih,Mechanics of Fracture,Three-Dimensional Crack Problems,Vol.2,Noordhoff Leiden (1975).
    [3] A.N.Guz,Mechanics of Brittle Fracture of Materials with Initial Stresses,Naukova Dumka,Kiev (1983).
    [4] A.N.Guz,Foundations of Three-Dimensional Theoly of Deformable Bodies Stability,Vyshcha Shkola,Kiev(1986).
    [5] A.N.Guz,Foundation of mechanics of brittle fracture of materials with initial stresses,Adv.Fract.Rec.Proc.6th Int.Conf (ICF6),New Delhi,4~10 Dec.,1984,Vol.2(1984),1223~1230.
    [6] A.N.Guz,V.M.Nazarenko and I.P.Starodubtsev,Plane problem of fracture of materials with two parallel cracks in compression along the cracks,Problems of Mechanics of Deformable Solid Body,University of Kalinin,Kalinin (1986),138~151.(inRussian)
    [7] I.P.Starodubtsev,Fracture of the body in compression along two parallel cracks in plane deformation condition Prikl.Mechanika,24,6 (1988),79~84.
    [8] A.N.Guz and V.M,Nazarenko,Symmetric failure of the half space with penny-shaped cracks in compression,Theor.Appl.Fract.Mech.,3,3 (1985),233~245.
    [9] V.V.Bolotin,Defects of the delamination type in structures of composite materials,Mechanics of Composite Materials,2 (1984).239~255.
    [10] A.N.Guz,Mechanics of Composite Materials and Structures Elements,Vol.1,Naukova Dumka,Kiev (1982).
    [11] A.M.Mikhailov,Some problems of cracks theory in beam approximation,J.Appl.Mech.and Techni.Fizi.,5 (1967),128~133.
    [12] A.N.Polilov and Yu.N.Rabotnov,Development of delaminations in compression of composites,Izv.,AN SSSR,Mechanika Tverdogo Tela,4 (1983),166~171.
    [13] L.I.Slepyan,Mechanics of Cracks,Leningrad (1981).
    [14] W.L.Yin,Axisymmetric buckling and growth of a circular delamination in compressed laminate,In t.J.Solids Struct.,21,5 (1985),503~514.
    [15] S.G.Mikhlin and Kh.L.Smolitsky,Approximate Methods of Solutions of Differential and Intengral Eqeuations,Nauka,Moscow (1965)..
    [16] B.P.Maslov,Investigation of stochastic composites with nonlinear and anisotropic properties of components,Dissertation for Doctor Degree,Kiev (1983).
    [17] D.Kolarov,A.Baltov and N.Boncheva,Mechanics of Plastic Media,Mir,Moscow (1979).
    [18] A.N.Guz,V.I.Knukh and V.M.Nazarenko,Compressive failure of materials with two parallel cracks: small and large deformation,Theor.Appl.Fracture Mech.,11 (1989),213~223.
  • 加载中
计量
  • 文章访问数:  1914
  • HTML全文浏览量:  106
  • PDF下载量:  447
  • 被引次数: 0
出版历程
  • 收稿日期:  1996-11-17
  • 刊出日期:  1997-06-15

目录

    /

    返回文章
    返回