推广约当引理以及Laplace变换与Fourier变换的对应关系
The Extended Jordan’s Lemma and the Relation between Laplace Transform and Fourier Transform
-
摘要: 单变量复变函数积分中用到的约当引理是在||f(Reiφ||=0(0≤π)的条件下使用的,而实际上约当引理可以在比较宽松的条件下就可使用,被积函数f(z)除在z的上半平面(Imz≥0)有有限个孤立奇点外,处处解析,且对p>0只要,则这里z=Rei,CR为上半平面的开弧半圆围道,利用推广约当引理可以证明Laplace变换实际上是对应的其复变量函数的Fourier变换。Abstract: Jordan's lemma can be used for a wider range than the original one. The extended Jordan's lemma can be described as follows. Let f(z) be analytic in the upper half of the z plane (Imz≥0), with the exception of a finite number of isolated singularities, and for P>0, if =0 where z=Reiφ and CR is the open semicircle in the upper half of the z plane.With the extended Jordan's lemma one can find that Laplace transform and Fourier transform are a pair of integral transforms which relate to each other.
-
[1] A.Sveshnikov and A.Tikchonov,The Theory of Functions of a Cmplex Variable,Mir Publisher,Moscow (1978). [2] 魏志勇、诸永泰.广义约当引理,甘肃科学学报,6(2) (1994),26
计量
- 文章访问数: 4847
- HTML全文浏览量: 228
- PDF下载量: 859
- 被引次数: 0