奇摄动非线性系统边值问题*
Boundary Value Problem for a Singularly Perturbed Nonlinear System
-
摘要: 本文利用对角化技巧和方法讨论二阶奇摄动非线性系统边值问题εy"=f(t,y,y',ε),y(0,ε)=α(ε),y(1,ε)=b(ε)当Jacobi矩阵fy'的特征值有K个负实部和N-K个正实部时,解的存在性及其渐近性质。Abstract: In this paper, by the technique and the method of deagonalization, the boundary value problem for second order singularly perturbed nonlinear system as follows is dealt with:εy"=f(t,y,y',ε),y(0,ε)=a(ε),y(1,ε)=b(ε) The existance of the solution and its asymptotic properties are discussed when the eigenvaslues of Jacobi matrix fy' has K negative real parts and N-K positve real parts.
-
Key words:
- nonlinear system /
- boundary value problem /
- diagonalization /
- singular perturbation
-
[1] K.W.Chang,Singular perturbations of a boundary problem for a vector second order differential equation,SIAM.J.Appl.Math.,30 (1976),42~54. [2] K.W.Chang,Diagonalization method for a vector boundary problem of singular perturbation type,J.Math.Anal.Appl.,48 (1974),652~665. [3] 倪守平,奇摄动向量Robin问题的对角化方法,应用数学和力学,10(4) (1989),315- 321. [4] 林宗池、林苏榕.某类二阶非线性系统初值问题的奇摄动,应用数学和力学,14(3) (1993) 95-100 [5] 刘光旭,关于奇摄动拟线性系统,应用数学和力学,8(11) (1987), 967-975 [6] K.W.Chang and W.A.Coppl,Singular perturbations of initial value probems over finite interval arch,Rational Mech.Anal.,32 (1969),268~280.
计量
- 文章访问数: 2304
- HTML全文浏览量: 145
- PDF下载量: 527
- 被引次数: 0