留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

论理想流体与线弹性结构的耦联振动

黄争鸣

黄争鸣. 论理想流体与线弹性结构的耦联振动[J]. 应用数学和力学, 1992, 13(10): 911-924.
引用本文: 黄争鸣. 论理想流体与线弹性结构的耦联振动[J]. 应用数学和力学, 1992, 13(10): 911-924.
Huang Zheng-ming. On the Coupled Vibration of an Ideal Fluid with a Linear Elastic Structure[J]. Applied Mathematics and Mechanics, 1992, 13(10): 911-924.
Citation: Huang Zheng-ming. On the Coupled Vibration of an Ideal Fluid with a Linear Elastic Structure[J]. Applied Mathematics and Mechanics, 1992, 13(10): 911-924.

论理想流体与线弹性结构的耦联振动

On the Coupled Vibration of an Ideal Fluid with a Linear Elastic Structure

  • 摘要: 本文对理想流体与线弹性结构的耦联振动问题作理论分析和数值分析.文中证明了耦联振动的固有频率存在并且均为正实数.将流-固耦合系统分析转化为单一结构物在真空中的自由振动分析后,频率方程中不再含有流体变元.使问题得以大大简化.给出了数值解的收敛性证明,以保证解的可靠性.文中还综合里兹法、边界元和有限元方法,提出一种分析转化后结构的混合算法.利用该算法,只需对现有结构分析程序稍作改进,就可分析那些理想流场与结构的耦合问题.一些数例说明了算法的有效性.
  • [1] Yamamoto,Y.,A variational principle for a solid-water interaction system,lnternat.J.Engrg.Sci.,19(1981),1757-1763.
    [2] 黄玉盈,液固藕联系统固有频率的一个变分式,华中工学院学报,力学专辑,13,1(1985).91-96.
    [3] Zienkiewicz,O.C.and P.Bettess,Fluid-structure dynamic interaction and wave forces:An introduction to numerical treatment Internat.J.Numer.Methods Engrg.,13,1(1978),1-16.
    [4] Mathews,I.C.,Numerical techniques for three-dimensional steady-state fluid-structure interaction,J.Acoust.Soc.Amer.,79,5 (1986).1317-1325.
    [5] Jenniigs,A.,Added mass for fluid-structure vibration problems,Internat.J.Numer.Methods Fluids,5,9(1985),817-830.
    [6] Kulak,R.F.,Three-dimensional fluid-structure coupling in transient analysis,Comput.& Structures,21,3(1985),529-542.
    [7] Sharan,S.K.and G.M.L.Gladwell,General method for the dynamic response analysis of fluid-structure systems.,Comput.& Structures,21,5(1985),937-943.
    [8] Gilbarg,D.and N.S.Trudinger,Elliptic Partial Differential Equations of Second Order,Springer-Verlag-New York(1977).
    [9] Necas,J.,Introduction to the Theory of Nonlinear Elliptic Equations,Leipzig (1983).
    [10] Adams,R.A.,Sobolev Spaces,Academic Press,New York-San Francisco-London(1975).
    [11] Brebbia,C.A.,The Boundary Element Method for Engineers,Dentech Press,London (1978).
    [12] Necas,J.and I.Hlavacek,Mathematical Theory of Elastico-Plastic Bodies,An Introduction,Amsterdam,Oxford-New York (1981).
    [13] Kantorovich,L.V.and G.P.Akilov,Functional Analysis,Pergamon Press,Oxford-New York (1982).
    [14] 郑哲敏、马宗魁,悬臂梁在一侧受有液体作用时的自由荡动,力学学报 3,2(1959).
    [15] DeRuntz and Geers,Added mass computation by the boundary element method,Internat,.Numer.Methods Engrg.,12 (1978),531-549.
    [16] Hunt,Knittel,and Barach,Finite element approach to acoustic radiation from elastic structures,J.Acost.Soc.Amer.,55(1974),269-280.
  • 加载中
计量
  • 文章访问数:  1872
  • HTML全文浏览量:  85
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  1989-01-23
  • 刊出日期:  1992-10-15

目录

    /

    返回文章
    返回