摘要:
本文用Williams给出的包含待定系数An(n=1,2,…)的应力场和位移场无穷级数解表示裂纹体系统的总势能∏,由最小势能原理,得到含未知数An的线性方程组.解此方程组,取主项A1,即得到相应的应力强度因子K1=√2πaA1.文中对单边直裂纹拉伸板进行了具体计算.在板的裂纹长度与板宽比a/W=0.5,板半长与板宽比g/W=2.0~2.5的情况下,仅采用了20~30个系数,结果误差小于5%.
Abstract:
Expressing the total potential energy of the system of a cracked body П by Williams' infinite series solution of stress and displacement components containing coefficients An(n = 1,2,...), we obtain a set of simultaneous linear equations of unknown coefficients An by using the principle of minimum potential energy. When the set of equations is solved, the stress intensity factor K1 can be easily determined. It is equal to √2πaA1 Take a sample plate as an example. A single-edgc-cracked plate under tension, with the ratio of crack length to the width of the plate being 0.5 and the ratio of half plate height to the width of the plate being 2.0 and 2. 5, has been calculated. Only 20-30 coefficients are taken, and the errors in stress intensity factors are within 5%.