摘要:
本文是[1]的继续.在本文中,利用[1]的结果我们证明了,对于流体的层流运动稳定性而言,在线性化问题中,按特征值定义与按扰动能量定义二者是完全等价的,从外,借助于Ляпунов方法,我们又证明了,如果线性化问题是渐近稳定的,当考虑非线性影响时,只要扰动能量足够小,则仍然是渐近稳定的.
Abstract:
In [1] Zhou extended some Liapounoff's theorems of the theory of stability in the case of plane laminar fluid flows. In [2] Zhou and Li investigated the eigenvalue problem and expansion theorems associated with Orr-Sommerfeld equation, and obtained some new results. In this paper, based on the results of [1] and [2] we shall prove: (1) For the linearized problem the definition of stability according to the eigenvalues of Orr-Sommerfeld equation and that according to the perturbation energy are equivalent; (2) The method of linearization is admissible for the stability problem of plane laminar fluid flows for sufficiently small initial disturbance.