留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有快速振荡外力的拟地转运动的平均原理

高洪俊 段金桥

高洪俊, 段金桥. 具有快速振荡外力的拟地转运动的平均原理[J]. 应用数学和力学, 2005, 26(1): 99-110.
引用本文: 高洪俊, 段金桥. 具有快速振荡外力的拟地转运动的平均原理[J]. 应用数学和力学, 2005, 26(1): 99-110.
GAO Hong-jun, DUAN Jin-qiao. Averaging Principle for Quasi-Geostrophic Motion Under Rapidly Oscillating Forcing[J]. Applied Mathematics and Mechanics, 2005, 26(1): 99-110.
Citation: GAO Hong-jun, DUAN Jin-qiao. Averaging Principle for Quasi-Geostrophic Motion Under Rapidly Oscillating Forcing[J]. Applied Mathematics and Mechanics, 2005, 26(1): 99-110.

具有快速振荡外力的拟地转运动的平均原理

基金项目: 国家自然科学基金资助项目(10001018);江苏省自然科学基金资助项目(BK2001108);美国国家自然科学基金资助项目(DMS-9973204;DMS-0139073)
详细信息
    作者简介:

    高洪俊(1966- ),江苏金坛人,教授、博士(联系人.Tel/Fax:+86-25-83598129;E-mail:gaohj@njnu.edu.cn).

  • 中图分类号: O175;O231

Averaging Principle for Quasi-Geostrophic Motion Under Rapidly Oscillating Forcing

  • 摘要: 一类大尺度的地球物理流体流可以用拟地转方程来描述.有限、但是大时间区间和整个时间轴上在快速振荡外力下的拟地转运动的平均原理被得到了.其中包括比较估计,稳定性估计和拟地转运动及其平均运动之间的收敛性.进一步,几乎周期拟地转运动的存在性和吸引子的收敛性也被得到了.
  • [1] Pedlosky J.Geophysical Fluid Dynamics[M].2nd ed.Berlin,New York:Springer-Verlag,1987.
    [2] Pedlosky J.Ocean Circulation Theory[M].Berlin:Springer-Verlag,1996.
    [3] Cessi P,Ierley G R.Symmetry-breaking multiple equilibria in quasigeostrophic, wind-driven flows[J].J Phys Oceanography,1995,25(3):1196—1205. doi: 10.1175/1520-0485(1995)025<1196:SBMEIQ>2.0.CO;2
    [4] Milliff R F,Morzel J.The global distribution of the time-average wind stress curl from nscat[J].J Atmos Sci,2001,58(5):109—131. doi: 10.1175/1520-0469(2001)058<0109:TGDOTT>2.0.CO;2
    [5] Gilbarg D,Trudinger N S.Elliptic Partial Differential Equations of Second Order[M].2nd ed.Berlin, New York:Springer-Verlag,1983.
    [6] Henry D.Geometric Theory of Semilinear Parabolic Equations[M].New York:Springer-Verlag,1981.
    [7] Duan J,Kloeden P E.Dissipative quasigeostrophic motion under temporally almost periodic forcing[J].J Math Anal Appl,1999,236(1):74—85. doi: 10.1006/jmaa.1999.6432
    [8] Levitan B M,Zhilov V V.Almost Periodic Functions and Differential Equations[M].Cambridge:Cambridge University Press,1982.(English version)
    [9] Ilyin A A.Averaging principle for dissipative dynamical system with rapidly oscillating right-hand sides[J].Math Sb,1996,187(5):635—677. doi: 10.1070/SM1996v187n05ABEH000126
    [10] Barcilon V,Constantin P,Titi E S.Existence of solutions to the Stommel-Charney model of the Gulf stream[J].SIAM J Math Anal,1988,19(6):1355—1364. doi: 10.1137/0519099
    [11] Dymnikov V P,Filatov A N.Mathematics of Climate Modeling[M].Boston,Cambridge,MA:Birkhauser,1997.
    [12] Wu J.Inviscid limits and regularity estimates for the solutions of the 2D dissipative quasigeostrophic equations[J].Indiana Univ Math J,1997,46(4):1113—1124.
    [13] Bennett A F,Kloeden P E.The dissipative quasigeostrophic equation[J].Mathematika,1981,28:265—288. doi: 10.1112/S0025579300010329
    [14] Brannan J,Duan J,Wanner T.Dissipative quasigeostrophic dynamics under random forcing[J].J Math Anal Appl,1998,228(1):221—233. doi: 10.1006/jmaa.1998.6128
    [15] Duan J.Time periodic quasigeostrophic motion under dissipation and forcing[J].Appl Math Comput,1999,102(2/3):121—127. doi: 10.1016/S0096-3003(98)10034-6
    [16] Babin A V,Vishik M I.Attractor of Evolution Equations[M].Amsterdam:North-Holland,1992.(English version)
    [17] Hale J K.Asymptotic Behavior for Dissipative Dynamical System[M].Providence,RI:Amer Math Soc, 1988.
    [18] Temam R.Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M].New York:Springer-Verlag,1988.
    [19] Kato T.Perturbation Theory for Linear Operators[M].New York:Springer-Verlag,1966.
    [20] Chepyzhov V V,Vishik M I.Non-Autonomous Dynamical Systems and Their Attractors, Appendix in the book: M I Vishik.Asymptotic Behavior of Solutions of Evolutionary Equations[M].Cambridge:Cambridge Univ Press,1992.
    [21] Chepyzhov V V,Vishik M I.A Hausdorff dimension estimate for kernal sections of non-autonomous evolution equations[J].Indiana Univ Math J,1993,42(3):1057—1076. doi: 10.1512/iumj.1993.42.42049
    [22] Chepyzhov V V,Vishik M I.Attractors of non-autonomous dynamical systems and their dimension[J].J Math Pures Appl,1994,73(3):279—333.
  • 加载中
计量
  • 文章访问数:  2555
  • HTML全文浏览量:  163
  • PDF下载量:  603
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-04-01
  • 修回日期:  2004-09-14
  • 刊出日期:  2005-01-15

目录

    /

    返回文章
    返回