非线性系统动力分析的模态综合技术
Dynamic Analysis of Nonlinear Systems by Modal Synthesis Techniques
-
摘要: 各种模态综合方法已广泛应用于线性结构的动力分析,但是,一般都不适用于非线性系统. 本文基于[20][21]提出的方法,将一种模态综合技术推广到非线性系统的动力分析.该法应用于具有连接件耦合的复杂结构系统,以往把连接件简化为线性弹簧和阻尼器.事实上,这些连接件通常具有非线性弹性和非线性阻尼特性.例如,分段线性弹簧、软特性或硬特性弹簧、库伦阻尼、弹塑性滞后阻尼等.但就各部件而言,仍属线性系统.可以通过计算或试验或兼由两者得到一组各部件的独立的自由界面主模态信息,且只保留低阶主模态.通过连接件的非线性耦合力,集合各部件运动方程而建立成总体的非线性振动方程.这样问题就成为缩减了自由度的非线性求解方程,可以达到节省计算机的存贮和运行时间的目的.对于阶次很高的非线性系统,若能缩减足够的自由度,那么问题就可在普通的计算机上得以解决. 由于一般多自由度非线性振动系统的复杂性,一般而言,这种非线性方程很难找到精确解.因此,对于任意激励下系统的瞬态响应,可以采用数值计算方法求解缩减的非线性方程.Abstract: Different kinds of modal synthesis method have been used widely in dynamic analysis of linear structure systems, but, in general, they are not suitable for nonlinear systems.In this paper, a kind of modal synthesis techniques is extended to dynamic analysis of nonlinear systems. The procedure is based upon the method suggested in [20],[21], which is applicable to vibration analysis for complex structure systems with coupling attachments but with simplified forms of linear springs and dampers. In fact, these attachments have nonlinear characteristics as those generally known to the cases of nonlinear elasticity and nonlinear damping, e.g., piecewise-linear springs, softening or hardening springs. Coulomb damping,elas-ioplastic hysteresis damping, etc. So long as the components of structure are still linear systems, we can get a set of independent free-interface normal mode information hut only keep the lower-order for each component. This can be done by computations or experiments or both. The global equations of linear vibration are set up by assembling of the component equations of motion with nonlinear coupling forces of attachments. Then the problem is reduced to less degrees of freedom for solving nonlinear equations. Thus considerable saving in computer storage and execution time can be expected. In the case of a very high-order system, if sufficient degrees of freedom are reduced, then it may be possible for the problem to be solved by the aid of a computer of ordinary grade.As the general nonlinear vibration of multiple degrees of freedom systems is quite involved, in general, the exact solution of a nonlinear system equations is not easy to find, so the numerical method can be adopted for solving the reduced nonlinear equations to obtain the transient response of system for arbitrary excitations.
-
[1] Hurty,W,C.,Vibration of structural systems by component mode synthesis,Journal of the Engineering Mechanics Division,ASCE,Vol.86,(Aug.1960),51-69. [2] Hurty,W.C.,Dynamic analysis of structural systems using component modes,AIAA Journal,Vol.3,(April 1965),678-685. [3] Serbin,H.,Vibration of composite structures,Journal of the Aeronautical Sciences,Vol.12,No.1,(1945). [4] Sofrin,T.C.,The combination of dynamical systems,Journal of the Aeronautical Sciences,Vol.13,No.6,(1946). [5] Bishop,R.E.D.,The analysis and synthesis of vibrating systems,Journal of the Royal Aeronautical Society,Vol.58,(1954). [6] Craig Jr.,R.R.,and M.C.C.Bampton,Coupling of substructures for dynamic analysis,AIAA Journal,Vol.9,(July 1971),1313-1319. [7] Goldman,R.L.,Vibration analysis by dynamic partitioning,AIAA Journal,Vol.7. (June 1969),1152-1154. [8] Hou,S.N.,Review of Modal synthesis techniques and a new approach,shock and Vibration Bulletin,No.40,pt.4,(1969),25-30. [9] Hintz,R.M.,Analytical methods in component modal synthesis.AIAA Journal,Vol.13,(Aug.1975),1007-1016. [10] Mac Neal,R.H.,A hybrid method of component mode synthesis.computers and Structures Journal,Vol.1,(1979),581-601. [11] Rubin,S.,Improved component-mode representation for structural dynamic analysis,AIAA Journal,Vol.13,(Aug.1975),995-1006. [12] Craig,R.R.and Ching-jone Chang,Free-interface methods of substructure coupling for dynamic analysis,AIAA.J.Vol.14,No.11,(Nov.1976). [13] Craig,R.R.and Ching-jone Chang,On the Use of Attachment Modes in Substructure Coupling for Dynamic Analysis,paper 77-405. AIAA/ASME 18th Structures,Structural Dynamics and Materials Conference,San Diego,(1977). [14] 王文亮、杜作润,用改进的模态综合法计算空间双层刚架的模态特性,上海力学,1,4(1980). [15] 朱德憋,结构动力分析的模态综合法,南航学报,1(1978). [16] 邢京堂、郑兆昌,基于弹性动力学变分原理的模态综合法理论研究,振动理论及应用学术会议,昆明(1981.12). [17] Craig,R.R.,Method of componect mode synthesis.Shock and Vibration Digest,Vol.9,No.11,(Nov.1977). [18] Nelson,F.C.,A review of substructure analysis of vibrating systems,The Shock and Vibration Digest,Vol.11,No.11,(Nov.1979). [19] Meirovitch,L and A.I.Hale.On the structure synthesis method.AIAA.J.Vol.19,No.7,(1981). [20] 郑兆昌早建基,汽车结构动力分析的模态综合技术,清华大学学报,21,3(1981). [21] 郑兆昌,复杂结构系统振动研究的模态综合技术,振动与冲击,1,1(1982). [22] Bathe,K.J.and E.L wi1son,Numerical Methods in Finite Element Analysis,Prentice-Hall,Inc. [23] Argyris,J.H.,et al.,Numerical Solution of Transient Nonlinear Problems,Computer Methods in Applied Mechanics and Engineering,Vol.(17)/(18),Part II/Feb.(1979).
计量
- 文章访问数: 2039
- HTML全文浏览量: 113
- PDF下载量: 1015
- 被引次数: 0