摘要:
在EPIC[1、2]、NONSAP[3]等弹塑性撞击计算的有限元程序中,都有一些共同的弱点.所有这些程序,都采用静力学问题中常用的简单线性形状函数来描写各位移分量.在这样的有限元法中,应变和应力分量在每一有限元中都是常量.但在运动方程中,应力分量都是以它们的空间导数的形式出现的.于是,在采用了线性形状函数来表达的位移分量以后,应力分量对运动方程的贡献必恒等于零.克服这种困难的一般方法是通过虚位移原理,把运动方程化为能量关系的变分形式,从而建立既作用在结点上而又在每一有限元内自相平衡的人为内力平衡系统.把施加在某一结点上的所有相邻有限元的人为内力的作用叠加在一起,就能计算这一结点的加速度.但是从虚位移原理化为能量关系的变分形式时,要求位移和应力在积分域内处处连续.也就是说,要求位移和应力有限元都是协调的.我们很易看到,线性形状函数所描述的位移有限元是连续协调的,但其有关的应力分量在有限元界面上,则并不连续.所以,这样的有限元处理,是否收敛并无把握,即使从近似角度看,也是难以令人满意的.而且,为了计算结点的加速度,我们还应该有建立质量矩阵的计算规则.目前有两种计算方法:一种是集总(lumped)质量法,另一种是一致(consistent)质量法[4].
Abstract:
There are some common difficulties encountered in elastic-plastic impact codes such as EPIC[1],[2] NONSAP[3] etc. Most of these codes use the simple linear functions usually taken from static problems to represent the displacement components. In such finite element formulation, the strain and stress components are constants in every element. In the equations of motion, the stress components in general appear in the form of their space derivatives. Thus, if we use such form functions to represent the displacement components, the effect of internal stresses to the equations of motion vanishes identically. The usual practice to overcome such difficulties is to establish as self-equilibrium system of internal forces acting on various nodal points by means of transforming equations of motion into variational form of energy relation through the application of virtual displacement principle. The nodal acceleration is then calculated from the total force acting on this node from all the neighbouring elements. The transformation of virtual displacement principle into the variational energy form is performed on the bases of continuity conditions of stress and displacement throughout the integrated space. That is to say, on the interface boundary of finite element, the assumed displacement and stress functions should be conformed. However, it is easily seen that, for linear form function of finite element calculation, the displacement continues everywhere, but not the stress components. Thus, the convergence of such kind of finite element computation is open to question. This kind of treatment has never been justified even in approximation sense. Furthermore, the calculation of nodal points needs a rule to calculate the mass matrix. There are two ways to establish mass matrix, namely lumped mass method and consistent mass method[4]. The consistent mass matrix can be obtained naturally through finite element formulation, which is consistent to the assumed form functions. However, the resulting consistent mass matrix is not in dia-gonalized form, which is inconvenient for numerical computation. For most codes, the lumped mass matrix is used, and in this case, the element mass is distributed in certain assumed proportions to all the nodal points of this element. The lumped mass matrix is diagonalized with diagonal terms composed of the nodal mass. However, the lumped mass assumption has never been justified. All these difficulties are originated from the simple linear form functions usually used in static problems. In this paper, we introduce a new quadratic form function for elastic-plastic impact problems. This quadratic form function possesses diagonalized consistent masf matrix, and non-vanishing effect of internal stress to the equations of motion. Thus with this kind of dynamic finite element, all above-said difficulties can be eliminated.