留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度增强的弹塑性损伤非局部本构模型研究

沈新普 沈国晓 陈立新 杨璐

沈新普, 沈国晓, 陈立新, 杨璐. 梯度增强的弹塑性损伤非局部本构模型研究[J]. 应用数学和力学, 2005, 26(2): 201-214.
引用本文: 沈新普, 沈国晓, 陈立新, 杨璐. 梯度增强的弹塑性损伤非局部本构模型研究[J]. 应用数学和力学, 2005, 26(2): 201-214.
SHEN Xin-pu, SHEN Guo-xiao, CHEN Li-xin, YANG Lu. Investigation on Gradient-Dependent Nonlocal Constitutive Models for Elasto-Plasticity Coupled With Damage[J]. Applied Mathematics and Mechanics, 2005, 26(2): 201-214.
Citation: SHEN Xin-pu, SHEN Guo-xiao, CHEN Li-xin, YANG Lu. Investigation on Gradient-Dependent Nonlocal Constitutive Models for Elasto-Plasticity Coupled With Damage[J]. Applied Mathematics and Mechanics, 2005, 26(2): 201-214.

梯度增强的弹塑性损伤非局部本构模型研究

基金项目: 辽宁省自然科学基金资助项目(2001101023)
详细信息
    作者简介:

    沈新普(1963- ),男,河北清河人,教授,博士(联系人.Tel:+86-24-23915126;Fax:+86-24-23906300;E-mail:xinpushen@vip.sina.com).

  • 中图分类号: O342

Investigation on Gradient-Dependent Nonlocal Constitutive Models for Elasto-Plasticity Coupled With Damage

  • 摘要: 简要介绍了几种主要的梯度增强非局部模型.基于“能量耗散梯度依赖”原则,在连续介质热力学框架内推导了梯度增强损伤与塑性耦合的本构关系,同时给出了一个基于塑性的损伤模型的梯度依赖本构的具体形式.在数值计算方面,结合移动最小二乘法和泰勒级数展开方法,建立了损伤场(有限元高斯积分点上)的Laplace值的近似求解格式,分别给出了二维和三维情况下的相关公式.给出的二维的韧性断裂的梯度依赖损伤塑性的数值应用,表明了格式的有效性和实用性.还讨论了内部长度的意义及取值问题.
  • [1] Belytschko T, Chiang H Y,Plaskacz E. High resolution two-dimensional shear band computations: imperfections and mesh dependence[J].Comput Methods Appl Mech Engrg,1994,137(1):1—15.
    [2] Besson J, Steglich D, Brocks W. Modeling of crack growth in round bars and plane strain specimens[J].Internat J Solids and Structures,2001,38(11):8259—8284. doi: 10.1016/S0020-7683(01)00167-6
    [3] Noll W. Materially uniform simple bodies with inhomogeneities[J].Arch Rational Mech Anal,1967,27(1):1—32. doi: 10.1007/BF00276433
    [4] Nedjar B. Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects[J].Internat J Solids and Structures,2001,38(9):5412—5451.
    [5] Nayroles B, Touzot G,Villon P.Generalizing the finite element method: diffuse approximation and diffuse elements[J].Comput Mech,1992,10(3):519—534.
    [6] Villon P.Contribution  L'optimisation[D].Thèse Prsente Pour L'obtention du Grade de Docteur D'état.France:Universitde Technologie de Compiègne, 1991.
    [7] Belytschko T, Krongauz Y, Organ D,et al.Meshless methods: an overview and recent developments[J].Comput Methods Appl Mech Engrg,1996,139(1):3—47. doi: 10.1016/S0045-7825(96)01078-X
    [8] Liu W K, Li S,Belytschko T. Moving least square kernel Galerkin method—(Ⅰ): Methodology and convergence[J].Comput Methods Appl Mech Engrg,1997,143(1):113—154. doi: 10.1016/S0045-7825(96)01132-2
    [9] Aifantis E C.On the role of gradient in the localization of deformation and fracture[J].Internat J Engrg Sci,1992,30(4):1279—1299. doi: 10.1016/0020-7225(92)90141-3
    [10] Comi C, Perego U. A generalized variable formulation for gradient dependent softening plasticity[J].Internat J Numer Methods Engrg,1996,39(6):3731—3755. doi: 10.1002/(SICI)1097-0207(19961115)39:21<3731::AID-NME24>3.0.CO;2-Z
    [11] Li X, Cescotto S. A mixed element method in gradient plasticity for pressure dependent materials and modelling of strain localization[J].Comput Methods Appl Mech Engrg,1997,144(1):287—305. doi: 10.1016/S0045-7825(96)01175-9
    [12] Liebe T, Steinmann P, Benallal A. Theoretical and computational aspects of a thermodynamically consistent framework for geometrically linear gradient damage[J].Comput Methods Appl Mech Engrg,2001,190(11):6555—6576. doi: 10.1016/S0045-7825(01)00250-X
    [13] Lemaitre J.A Course on Damage Mechanics[M].Berlin:Springer-Verlag,1992.
    [14] Maugin G A. Remarks on the thermomechanics of weakly nonlocal theories[A]. In:Nonlocal Aspects in Solid Mechanics, Abstracts of the EuroMech Colloquium 378[C].France:Mulhouse,1998,2—9.
    [15] Hansen N R,Schreyer H L. A thermodynamically consistent framework for theories of elastoplasticity coupled with damage[J].Internat J Solids Structures,1994,31(2):359—389. doi: 10.1016/0020-7683(94)90112-0
    [16] Saanouni K, Forster C, Hatira F B. On the anelastic flow with damage[J].Internat J Dama Mech,1994,3(1):140—169. doi: 10.1177/105678959400300203
    [17] Grange M, Besson J, Andrieu E. An anisotropic Gurson model to represent the ductile rupture of hydrided Zircaloy-4 sheets[J].Internat J Fracture,2000,105(1):273—293. doi: 10.1023/A:1007615513884
    [18] Gurson A L. Continuum theory of ductile rupture by void nucleation and growth—Part Ⅰ:Yield criteria and flow rules for porous ductile media[J].J Engng Mater Tech,1977,99(1):2—15. doi: 10.1115/1.3443401
    [19] Kachanov L M.Introduction to Continuum Damage Mechanics[M].the Netherlands:Maritinus Nijhoff Dordrecht,1986.
    [20] 沈新普,沈国晓,陈立新.用于应变局部化行为分析的弹塑性损伤耦合本构研究[J].应用数学和力学,2004,25(2):1294—1256.
    [21] Brunet M, Morestin F, Walter H. Damage identification for anisotropic sheet-metals using a non-local damage model[A].In:Proceedings of 2002 ASME-IMECE[C].IMECE 2002—33088,Nov 17-22, 2002, New Orleans, 1—10.
  • 加载中
计量
  • 文章访问数:  2590
  • HTML全文浏览量:  150
  • PDF下载量:  943
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-01-09
  • 修回日期:  2004-07-19
  • 刊出日期:  2005-02-15

目录

    /

    返回文章
    返回