留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有非均匀界面相的颗粒和纤维增强复合材料弹性静力学问题的解析解

段慧玲 王建祥 黄筑平 黄红波

段慧玲, 王建祥, 黄筑平, 黄红波. 具有非均匀界面相的颗粒和纤维增强复合材料弹性静力学问题的解析解[J]. 应用数学和力学, 2005, 26(3): 309-315.
引用本文: 段慧玲, 王建祥, 黄筑平, 黄红波. 具有非均匀界面相的颗粒和纤维增强复合材料弹性静力学问题的解析解[J]. 应用数学和力学, 2005, 26(3): 309-315.
DUAN Hui-ling, WANG Jian-xiang, HUANG Zhu-ping, HUANG Hong-bo. Analytical Solutions for Elastostatic Problems of Particle- and Fiber-Reinforced Composites With Inhomogeneous Interphases[J]. Applied Mathematics and Mechanics, 2005, 26(3): 309-315.
Citation: DUAN Hui-ling, WANG Jian-xiang, HUANG Zhu-ping, HUANG Hong-bo. Analytical Solutions for Elastostatic Problems of Particle- and Fiber-Reinforced Composites With Inhomogeneous Interphases[J]. Applied Mathematics and Mechanics, 2005, 26(3): 309-315.

具有非均匀界面相的颗粒和纤维增强复合材料弹性静力学问题的解析解

基金项目: 国家自然科学基金资助项目(10032010;10072002;10372004)
详细信息
    作者简介:

    段慧玲(1970- ),女,蒙古族,内蒙古人,博士(E-mail:hlduan@pku.edu.cn);王建祥(联系人.Tel:+86-10-62757948;Fax:+86-10-62751812;E-mial:jxwang@pku.edu.cn).

  • 中图分类号: TB330.1

Analytical Solutions for Elastostatic Problems of Particle- and Fiber-Reinforced Composites With Inhomogeneous Interphases

  • 摘要: 通过将以位移表示的平衡方程转化为黎卡提方程,得到了具有非均匀界面相的颗粒和纤维增强复合材料非均匀界面相内弹性场的解析解.所得的解析解是弹性模量呈幂次方变化的非均匀界面相解的通用形式.任意给定1个幂指数,可以得到具有非均匀界面相的颗粒和纤维增强复合材料体积模量的解析表达式.通过改变幂指数及幂次方项的系数,此解析解可适用于具有多种不同性质的非均匀界面相.结果表明:界面相模量和厚度对复合材料模量有很大的影响,当界面相存在时,粒子将出现一种“尺寸效应”.
  • [1] Dai L H, Huang Z P, Wang R. Explicit expressions for bounds for the effective moduli of multi-phased composites by the generalized self-consistent method[J].Composites Science and Technology,1999,59(11):1691—1699. doi: 10.1016/S0266-3538(99)00031-7
    [2] 仲政. 含柔性涂层的颗粒增强复合材料弹性模量估计[J].固体力学学报, 2000, 21(4):350—354.
    [3] Wu Y M, Huang Z P, Zhong Y,et al. Effective moduli of particle-filled composite with inhomogeneous interphase: Part I—bounds[J].Composites Science and Technology,2004,64(9):1345—1351. doi: 10.1016/j.compscitech.2003.10.009
    [4] Zhong Y, Wang J, Wu Y M,et al. Effective moduli of particle-filled composite with inhomogeneous interphase: Part II—mapping method and evaluation[J]. Composites Science and Technology, 2004,64(9):1353—1362. doi: 10.1016/j.compscitech.2003.10.010
    [5] Wang W, Jasiuk I. Effective elastic constants of particulate composites with inhomogeneous interphases[J].Journal of Composite Materials,1998,32(15):1391—1424. doi: 10.1177/002199839803201503
    [6] Ding K, Weng G J. The influence of moduli slope of a linearly graded matrix on the bulk moduli of some particle and fiber-reinforced composites[J].Journal of Elasticity,1999,53(1):1—22.
    [7] Jasiuk I, Kouider M W. The effect of an inhomogeneous interphase on the elastic constants of transversely istropic composites[J].Mechanics of Materials, 1993,15(1): 53—63. doi: 10.1016/0167-6636(93)90078-6
    [8] Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models[J].Journal of the Mechanics and Physics of Solids,1979,27(3):315—330. doi: 10.1016/0022-5096(79)90032-2
    [9] Hashin Z. The elastic moduli of heterogeneous materials[J].Journal of Applied Mechanics,1962,29(1):143—150. doi: 10.1115/1.3636446
    [10] Hashin Z, Rosen B W. The elastic moduli of fiber-reinforced materials[J].Journal of Applied Mechanics,1964,31(2):223—232. doi: 10.1115/1.3629590
    [11] Zheng Q S, Du D X. An explicit and universally applicable estimate for the effective properties of multiphase composites which account for inclusion distribution[J]. Journal of the Mechanics and Physics of Solids,2001,49(11):2765—2788. doi: 10.1016/S0022-5096(01)00078-3
  • 加载中
计量
  • 文章访问数:  2736
  • HTML全文浏览量:  109
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-07-13
  • 修回日期:  2004-12-03
  • 刊出日期:  2005-03-15

目录

    /

    返回文章
    返回