留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性动脉血管中血液流动特性的模拟和分析

A·克乌玛 C·L·范西尼 G·C·夏玛

A·克乌玛, C·L·范西尼, G·C·夏玛. 弹性动脉血管中血液流动特性的模拟和分析[J]. 应用数学和力学, 2005, 26(3): 316-324.
引用本文: A·克乌玛, C·L·范西尼, G·C·夏玛. 弹性动脉血管中血液流动特性的模拟和分析[J]. 应用数学和力学, 2005, 26(3): 316-324.
Anil Kumar, C. L. Varshney, G. C. Sharma. Performance Modeling and Analyis of Blood Flow in Elastic Arteries[J]. Applied Mathematics and Mechanics, 2005, 26(3): 316-324.
Citation: Anil Kumar, C. L. Varshney, G. C. Sharma. Performance Modeling and Analyis of Blood Flow in Elastic Arteries[J]. Applied Mathematics and Mechanics, 2005, 26(3): 316-324.

弹性动脉血管中血液流动特性的模拟和分析

详细信息
  • 中图分类号: O242.1;O357.1;R318.01

Performance Modeling and Analyis of Blood Flow in Elastic Arteries

  • 摘要: 研究了两个不同的非牛顿血液流动模型:低粘性剪切简单幂律模型和低粘性剪切及粘弹性振荡流的广义Maxwell模型.同时利用这两个非牛顿模型和牛顿模型,研究了磁场中刚性和弹性直血管中血液的正弦型脉动.在生理学条件下,大动脉中血液的弹性对其流动性态似乎并不产生影响,单纯低粘性剪切模型可以逼真地模拟这种血液流动.利用高剪切幂律模型模拟弹性血管中的正弦型脉动流,发现在同一压力梯度下,与牛顿流体相比较,幂律流体的平均流率和流率变化幅度都更小.控制方程用Crank-Niclson方法求解.弹性动脉中血液受磁场作用是产生此结果的直观原因.在主动脉生物流的模拟中,与牛顿流体模型比较,发现在匹配流率曲线上,幂律模型的平均壁面剪切应力增大,峰值壁面剪切应力减小.讨论了弹性血管横切磁场时的血液流动,评估了血管形状和表面不规则等因素的影响.
  • [1] Thurston G B.Rheological parameters for the viscosity,visco-elasticity and thixotropy of blood[J].Biorheology,1979,16:149—155.
    [2] Liepsch D, Moravec S. Pulsatile flow of non-Newtonian fluid in distensible models of human arteries[J].Biorheology,1984,21:571—583.
    [3] Rindt C C M,Van de Vosse F N,Van Steenhoven A A,et al.A numerical and experimental analysis of the human carotid bifurcation[J].J Biomechanics,1987,20:499—509. doi: 10.1016/0021-9290(87)90250-8
    [4] Nazemi M,Kleinstreuer C,Archie J P.Pulsatile two-dimensional flow and plaque formation in a carotid artery bifurcation[J].J Biomechanics,1990,23(10):1031—1037. doi: 10.1016/0021-9290(90)90318-W
    [5] Rodkiewicz C M,Sinha P,Kennedy J S.On the application of a constitutive equation for whole human blood[J].J Biomechanical Engg,1990,112:198—204. doi: 10.1115/1.2891172
    [6] Boesiger P,Maier S E,Kecheng L,et al.Visualisation and quantification of the human blood flow by magnetic resonance imaging[J].J Biomechanics,1992,25:55—67. doi: 10.1016/0021-9290(92)90245-V
    [7] Perktold K,Thurner E,Kenner T.Flow and stress characteristics in rigid walled compliant carotid artery bifurcation models[J].Medical and Biological Engg and Computing,1994,32:19—26. doi: 10.1007/BF02512474
    [8] Sharma G C,Kapoor J.Finite element computations of two-dimensional arterial flow in the presence of a transverse magnetic field[J].International J for Numerical Methods in Fluid Dynmaics,1995,20:1153—1161. doi: 10.1002/fld.1650201004
    [9] Dutta A,Tarbell J M.Influence of non-Newtonian behavior of blood on flow in an elastic artery model[J].ASME J Biomechanical Engg,1996,118:111—119. doi: 10.1115/1.2795936
    [10] Lee R,Libby P.The unstable atheroma[J].Arteriosclerosis Thrombosis Vascular Biology,1997,17:1859—1867. doi: 10.1161/01.ATV.17.10.1859
    [11] Korenaga R,Ando J,Kamiya A.The effect of laminar flow on the gene expression of the adhesion molecule in endothelial cells[J].Japanese J Medical Electronics and Biological Engg,1998,36:266—272.
    [12] Rachev A,Stergiopelos N,Meister J J.A model for geometric and mechanical adaptation of arteries to sustained hypertension[J].J Biomechanical Engg,1998,120:9—17. doi: 10.1115/1.2834313
    [13] Rees J M,Thompson D S.Shear stress in arterial stenoses:a momentum integral model[J].J Biomechanics,1998,31:1051—1057. doi: 10.1016/S0021-9290(98)00130-4
    [14] Tang D,Yang C,Huang Y,et al.Wall stress and strain analysis using a three-dimensional thick wall model with fluid-structure interactions for blood flow in carotid arteries with stenoses[J].Computers and Structures,1999,72:341—377. doi: 10.1016/S0045-7949(99)00009-7
    [15] Zendehbudi G R,Moayary M S.Comparison of physiological and simple pulsatile flows through stenosed arteries[J].J Biomechanics,1999,32:959—965. doi: 10.1016/S0021-9290(99)00053-6
    [16] Berger S A,Jou L D.Flows in stenotic vessels[J].Annual Review of Fluid Mechanics,2000,32:347—384. doi: 10.1146/annurev.fluid.32.1.347
    [17] Botnar R,Rappitch G,Scheidegger M B,et al.Hemodynamics in the carotid artery bifurcation:a comparison between numerical simulation and in vitro MRI measurements[J].J Biomechanics,2000,33:137—144. doi: 10.1016/S0021-9290(99)00164-5
    [18] Stroud J S,Berger S A,Saloner D.Influence of stenosis morphology on flow through severely stenotic vessels:implications for plaque rupture[J].J Biomechanics,2000,33:443—455. doi: 10.1016/S0021-9290(99)00207-9
    [19] 夏玛 G C,马德胡 J,克乌玛 A.动脉血管流动计算的伽辽宁省金有限元法研究[J].应用数学和力学,2001,22(9):911—917.
    [20] Milnor W R.Hemodynamics[M].2nd edition.Baltmore:Williams and Wilkins,1989.
    [21] White K C.Hemo-dynamics and wall shear rate measurements in the abdominal aorta of dogs[D].Ph D Thesis.The Pennsylvania State University.
    [22] Dutta A,Wang D M,Tarbell J M.Numerical analysis of flow in an elastic artery model[J].ASME J Biomechanical Engg,1992,114:26—32. doi: 10.1115/1.2895444
    [23] Patel D J,Janicki J S,Vaishnav R N,et al.Dynamic anisotropic viscoelastic properties of the aorta in living dogs[J].Circulation Research,1973,32:93—98. doi: 10.1161/01.RES.32.1.93
  • 加载中
计量
  • 文章访问数:  3250
  • HTML全文浏览量:  201
  • PDF下载量:  1014
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-10-17
  • 刊出日期:  2005-03-15

目录

    /

    返回文章
    返回