Interactions Between Two Sedimenting Particles With Different Sizes
-
摘要: 应用改进的拉格朗日乘子/虚拟区域算法对不同大小的两个圆形粒子在二维方槽中的沉降过程和相互作用进行了直接数值模拟,并进行了实验验证.结果表明不同大小的两个粒子在沉降过程中的相互作用可以描述为追尾、接触、旋转和分离4个过程,只有当两个粒子尺度差异很小时,才会重复进行DKT过程.在两个粒子相互作用的过程中,小粒子的运动受到大粒子的影响更剧烈一些,而相反大粒子运动包括运动轨迹和速度所受到的影响则相对较小.
-
关键词:
- 相互作用 /
- 拉格朗日乘子/虚拟方法 /
- 圆形粒子
Abstract: An improved implementation of Distributed Lagrange multiplier/fictitious domain method was presented and used to simulate the interactions between two circular particles sedimenting in a two-dimensional channel. The simulation results were verified by comparison with experiments. The results show that the interactions between two particles with different sizes can be described as drafting, kissing, tumbling and separating. Only for small diameter ratio, the two particles will interact undergoing repeated DKT process. Otherwise, the two particles will separate after their tumbling. The results also show that, during the interaction process, the motion of the small particle is strongly affected while the large particle is affected slightly. -
[1] Davis R H, Acrivos A.Sedimentation of noncolloidal particles at low Reynolds numbers[J].Ann Rev Fluid Mech,1985,17:91—118. doi: 10.1146/annurev.fl.17.010185.000515 [2] Fortes A, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles[J].J Fluid Mech,1987,177:467—483. doi: 10.1017/S0022112087001046 [3] Ritz J B, Caltagirone J P. A numerical continuous model for the hydrodynamics of fluid particle systems[J].Int J Numer Meth Fluids,1999,30(8):1067—1090. doi: 10.1002/(SICI)1097-0363(19990830)30:8<1067::AID-FLD881>3.0.CO;2-6 [4] Feng J, Hu H H, Joseph D D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid,1 Sedimentation[J].J Fluid Mech,1994,261:95—134. doi: 10.1017/S0022112094000285 [5] Smereka P. On the motion of bubbles in periodic box[J].J Fluid Mech,1993,254:79—112. doi: 10.1017/S0022112093002046 [6] Sangani A S, Didwania A K. Numerical simulation of flows of bubbly liquids at large Reynolds number[J].J Fluid Mech,1993,250:307—337. doi: 10.1017/S0022112093001478 [7] Brady J F, Bossis G. Stokesian dynamics[J].Ann Rev Fluid Mech,1988,20:11—157. [8] Hu H H, Joseph D D, Crochet M J. Direct simulation of fluid particle motions[J].Theor Comp Fluid Dyn,1992,3(5):285—306. doi: 10.1007/BF00717645 [9] Glowinski R, Pan T W, Hesla T I,et al. A distributed Lagrange multiplier/fictitious domain method for particulate flows[J].Int J Multiphase Flow,1999,25(5):755—794. doi: 10.1016/S0301-9322(98)00048-2 [10] Shao X M, Lin J Z, Yu Z S. Sedimentation of a single particle between two parallel walls[J].J Zhejiang University Sci,2004,5(1):111—116. doi: 10.1631/jzus.2004.0111 [11] SHAO Xue-ming. Direct simulation of particulate flows[J].J Hydrodynamics,2003,15(3):89—95.
计量
- 文章访问数: 2454
- HTML全文浏览量: 146
- PDF下载量: 687
- 被引次数: 0