留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性

H·M·约塞夫

H·M·约塞夫. 带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性[J]. 应用数学和力学, 2005, 26(4): 431-436.
引用本文: H·M·约塞夫. 带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性[J]. 应用数学和力学, 2005, 26(4): 431-436.
Hamdy M. Youssef. Dependence of the Modulus of Elasticity and the Thermal Conductivity on the Reference Temperature in Generalized Thermoelasticity for an Infinite Material With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2005, 26(4): 431-436.
Citation: Hamdy M. Youssef. Dependence of the Modulus of Elasticity and the Thermal Conductivity on the Reference Temperature in Generalized Thermoelasticity for an Infinite Material With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2005, 26(4): 431-436.

带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性

详细信息
    作者简介:

    H·M·约塞夫.讲师,博士(E-mail:yousefanne@yahoo.com).

  • 中图分类号: O343.6

Dependence of the Modulus of Elasticity and the Thermal Conductivity on the Reference Temperature in Generalized Thermoelasticity for an Infinite Material With a Spherical Cavity

  • 摘要: 利用具某一松弛时间的广义热弹性方程求解了带球形空腔的无限大材料问题.该材料的弹性模量和传热系数是可变的.空腔的内表面没有力作用,但有热冲击作用.利用Laplace变换求得直接逼近解.数值求解了Laplace逆变换.给出了温度、位移和应力的分布图.
  • [1] Lord H,Shulman Y.A generalized dynamical theory of thermoelasticity[J].J Mech Phys Solids,1967,15(5):229—309. doi: 10.1016/0022-5096(67)90013-0
    [2] Sherief H,Dahaliwal R.A generalized one-dimensional thermal shock problem for short times[J].J Thermal Stresses,1981,4:407—420. doi: 10.1080/01495738108909976
    [3] Sherief H,Anwar M.Problem in generalized thermoelasticity[J].J Thermal Stresses,1986,9:165—182. doi: 10.1080/01495738608961895
    [4] Sherief H.Fundametal solution to the generalized thermoelastic problem for short times[J].J Thermal Stresses,1986,9:151—164. doi: 10.1080/01495738608961894
    [5] Noda N.Thermal Stresses in materials with temperature-dependent properties[A].In:Richard B Hetnarski Ed.Thermal Stresses[C].Vol 1.Amsterdam:North-Holland,1986,391—396.
    [6] Takeuti Y,Noda N.A three-dimensional treatment of transient thermal stresses in a circular cylinder due to an arbitrary heat supply[J].J Appl Mech,1978,45:817—821. doi: 10.1115/1.3424425
    [7] Nowacki W.Dynamic Problems of Thermoelasticity[M].Leyden:Noordhoff International Publishing,1975.
    [8] Ezzat M A,Othman M I,El-Karamany.The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity[J].J Thermal Stresses,2001,24(12):1159—1176. doi: 10.1080/014957301753251737
    [9] Sherief Hany H,Anwar Mohamed N.A problem in generalized thermoelasticity for an infinitely long annular cylinder[J].Internat J Engrg Sci,1988,26(3):301—306. doi: 10.1016/0020-7225(88)90079-1
    [10] Hanig G,Hirdes U.A method for the numerical inversion of Laplace transform[J].J Comput Appl Math,1984,10(1):113—132. doi: 10.1016/0377-0427(84)90075-X
    [11] Chu H,Chen C,Weng C.Applications of Fourier series technique to transient heat transfer[J].Chem Eng Commun,1982,16:215—227. doi: 10.1080/00986448208911098
    [12] Hasselman D P H,Heller R A.Thermal Stresses in Severe Environments[M].Plenum,1980,61—80.
  • 加载中
计量
  • 文章访问数:  2637
  • HTML全文浏览量:  119
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-07-28
  • 修回日期:  2004-12-27
  • 刊出日期:  2005-04-15

目录

    /

    返回文章
    返回