留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性板中精化理论与分解定理的等价性

赵宝生 王敏中

赵宝生, 王敏中. 弹性板中精化理论与分解定理的等价性[J]. 应用数学和力学, 2005, 26(4): 447-455.
引用本文: 赵宝生, 王敏中. 弹性板中精化理论与分解定理的等价性[J]. 应用数学和力学, 2005, 26(4): 447-455.
ZHAO Bao-sheng, WANG Min-zhong. Equivalence of the Refined Theory and the Decomposed Theorem of an Elastic Plate[J]. Applied Mathematics and Mechanics, 2005, 26(4): 447-455.
Citation: ZHAO Bao-sheng, WANG Min-zhong. Equivalence of the Refined Theory and the Decomposed Theorem of an Elastic Plate[J]. Applied Mathematics and Mechanics, 2005, 26(4): 447-455.

弹性板中精化理论与分解定理的等价性

基金项目: 国家自然科学基金资助项目(10172003;10372003);教育部博士点基金资助项目(2000000112)
详细信息
    作者简介:

    赵宝生(1973- ),男,吉林四平人,讲师,博士(联系人.Tel:+86-412-2813695;Fax:+86-412-5929777;E-mail:zhaobaos@263.net).

  • 中图分类号: O343

Equivalence of the Refined Theory and the Decomposed Theorem of an Elastic Plate

  • 摘要: 将Cheng氏精化理论和Gregory分解定理联系起来,获得了两者的等价性(Cheng利用算子矩阵行列式求解多元偏微方程组的方法,得到了一个方程,他认为这个方程的解是3个微分方程的解的和,没有证明这种分解的合理性).从Papkovich-Neuber通解出发给出一个完整的精化理论的证明.首先将板内的位移利用中面上位移及其沿板厚方向的梯度表示出来,并获得板内应力张量.再利用附录中给出的定理,由边界条件和Lur'e算子方法获得精化理论.最后利用基本的数学工具分别证明了,Cheng氏精化理论中的3个方程分别与Gregory分解定理的三个应力状态的等价性.即:Cheng氏精化理论的双调和方程、剪切方程、超越方程与Gregory分解定理的内应力状态、剪切应力状态、Papkovich-Fadle应力状态一一等价.
  • [1] CHENG Shun.Elasticity theory of plates and a refined theory[J].Journal of Application Mechanics,1979,46(2):644—650.
    [2] Lur'e A I.Three-Dimensional Problems in the Theory of Elasticity[M].New York: Interscience, 1964,148—166.
    [3] 王飞跃.横观各向同性板的弹性精化理论[J].上海力学,1985,6(2):10—21.
    [4] Gregory R D.The general form of the three-dimensional elastic field inside an isotropic plate with free faces[J].Journal of Elasticiy,1992,28(1):1—28. doi: 10.1007/BF00042522
    [5] Gregory R D.The semi-infinite strip x≥0,-1≤y≤1;completeness of the Papkovich-Fadle eigenfunctions when xx(0,y),yy(0,y) are prescribed[J].Journal of Elasticity,1980,10(1):57—80. doi: 10.1007/BF00043135
    [6] Gregory R D.The traction boundary value problems for the elastostatic semi-infinite strip; existence of solution, and completeness of the Papkovich-Fadle eigenfunctions[J].Journal of Elasticity,1980,10(3):295—327. doi: 10.1007/BF00127452
    [7] WANG Min-zhong,ZHAO Bao-sheng. The decomposed form of the three-dimensional elastic plate[J].Acta Mechanica,2003,166(3): 207—216. doi: 10.1007/s00707-003-0029-2
    [8] 赵宝生,王敏中. 横观各向同性板的分解理论[J].力学学报,2004,36(1):57—63.
    [9] WANG Min-zhong,WANG Wei.Completeness and nonuniqueness of general solutions of transversely isotropic elasticity[J].International Journal of Solids and Structures,1995,32(3/4):501—513. doi: 10.1016/0020-7683(94)00114-C
    [10] WANG Wei,WANG Min-zhong. Constructivity and completeness of the general solutions in elasto~dynamics[J].Acta Mechanica,1992,91(1):209—214. doi: 10.1007/BF01194110
    [11] WANG Wei,SHI Ming-xing.Thick plate theory based on general solutions of elasticity[J].Acta Mechanica,1997,123(1):27—36. doi: 10.1007/BF01178398
  • 加载中
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  163
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-06-04
  • 修回日期:  2004-12-03
  • 刊出日期:  2005-04-15

目录

    /

    返回文章
    返回