Precise Integral Algorithm Based Solution for Transient Inverse Heat Conduction Problems With Multi-Variables
-
摘要: 基于有限元法和精细积分算法,提出了一种求解瞬态热传导多宗量反演问题的新方法.采用有限元法和精细积分算法分别对空间、时间变量进行离散,可以得到正演问题高精度的半解析数值模型,由此建立了多宗量反演的计算模式,并给出敏度分析的计算公式.对一维和二维的热物性参数、热源项、边界条件等进行了单宗量和多宗量的反演求解,初步考虑了初值和噪音等对反演结果的影响,数值算例验证了该方法的有效性.Abstract: By modeling direct transient heat conduction problems via finite element method (FEM) and precise integral algorithm, a new approach is presented to solve transient inverse heat conduction problems with multi-variables. Firstly, the spatial space and temporal domain are discretized by FEM and precise integral algorithm respectively. Then, the high accuracy semi-analytical solution of direct problem can be got. Finally, based on the solution, the computing model of inverse problem and expression of sensitivity analysis are established. Single variable and variables combined identifications including thermal parameters, boundary conditions and source-related terms etc. are given to validate the approach proposed in 1-D and 2-D cases. The effects of noise data and initial guess on the results are investigated. The numerical examples show the effectiveness of this approach.
-
Key words:
- heat conduction /
- inverse problem /
- multi-variables /
- precise integral algorithm /
- finite element
-
[1] Huang C H, Yan J Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity[J].Int J Heat and Mass Transfer,1995,38(18):3433—3441. doi: 10.1016/0017-9310(95)00059-I [2] Tervola P.A method to determine the thermal conductivity from measured temperature profile[J].Int J Heat and Mass Transfer,1989,32(8):1425—1430. doi: 10.1016/0017-9310(89)90066-5 [3] Huang C H, Chao B H. An inverse geometry problem in identifying irregular boundary configurations[J].Int J Heat and Mass Transfer,1997,40(9):2045—2053. doi: 10.1016/S0017-9310(96)00280-3 [4] Huang C H, Osizik M N. Inverse problem of determining unknown wall heat flux in laminar flow through a parallel plate duct[J].Numerical Heat Transfer, Part A,1992,21(1):55—70. doi: 10.1080/10407789208944865 [5] Huang C H, Osizik M N. Optimal regularization method to determine the unknown strength of a surface heat source[J].Int J of Heat and Fluid Flow,1991,12(2):173—178. doi: 10.1016/0142-727X(91)90045-W [6] Refahi A K, Yvon J. Determination of heat sources and heat transfer coefficient for two-dimensional heat flow-numerical and experimental study[J].Int J Heat and Mass Transfer,2001,44(7):1309—1322. doi: 10.1016/S0017-9310(00)00186-1 [7] Tseng A A, Chen T C, Zhao F Z. Direct sensitivity coefficient method for solving two-dimensional inverse heat conduction problems by finite-element scheme[J].Numerical Heat Transfer, Part B,1995,27(3):291—307. doi: 10.1080/10407799508914958 [8] Zhong W X, Williams F W. A precise time step integration method[J].J Mech Eng Sci,Part C,1994,208(6):427—430. doi: 10.1243/PIME_PROC_1994_208_148_02 [9] 蔡志勤.逐步积分及其部分演化[D].博士论文,大连:大连理工大学,1998,17—38. [10] 王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997,421—728. [11] 王德人.非线性方程组解法与最优化方法[M].北京:人民教育出版社,1979,236—261.
计量
- 文章访问数: 2971
- HTML全文浏览量: 143
- PDF下载量: 615
- 被引次数: 0