Model of Centrifugal Effect and Attitude Maneuver Stability of a Coupled Rigid-Flexible System
-
摘要: 研究非线性离心力对刚-柔耦合系统的大范围姿态运动的影响.首先从离心力势场的概念出发,推导了刚-柔耦合系统的非线性模型;然后通过近似计算分析了非线性离心力对系统姿态运动的动态效应;最后,在只有系统姿态与姿态速率测量值的条件下,基于能量范数选择Liapunov函数,证明了采用PD反馈控制律能够确保大角度姿态机动过程的稳定性.Abstract: The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of "centrifugal potential field", and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Liapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.
-
Key words:
- Coupled rigid-flexible system /
- nonlinear /
- rigid-body motion /
- elastic vibration
-
[1] 马兴瑞,王本利,苟兴宇,等著.航天器动力学——若干问题进展及应用[M].北京:科学出版社,2001. [2] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance,Control and Dynamics,1987,10(2):139—150. doi: 10.2514/3.20195 [3] Likins P W.Finite element appendage equations for hybrid coordinate dynamic analysis[J].J of Solids and Structures,1972,8:709—731. doi: 10.1016/0020-7683(72)90038-8 [4] Sakawa Y, LUO Zheng-hua.Modeling and control of coupled bending and torsional vibration of flexible beams[J].IEEE Trans on Automatic Control,1989,34(9):970—977. doi: 10.1109/9.35810 [5] Enrique Barbieri, Umit Ozguner. Unconstrained and constrained mode expansions for a flexible slewing link[J].Transaction of ASME,1988,110(6):416—421. doi: 10.1115/1.3250501 [6] Mrgul ?.Orientation and stabilization of a flexible beam attached to a rigid body:planar motion[J].IEEE Trans on Automatic Control,1991,36(8):953—962. doi: 10.1109/9.133188 [7] Bloch A M. Stability analysis of a rotating flexible system[J].Acta Appli Mathe,1989,15(8):211—234. doi: 10.1007/BF00047531 [8] 肖世富,陈滨.一类刚-柔耦合系统柔体模态分析的特征[J].中国空间科学技术,1998,18(4):8—13. [9] 胡振东,洪嘉振.刚柔耦合系统动力学建模及分析[J].应用数学和力学,1999,20(10):1087—1093. [10] 李智斌.刚-柔-控耦合系统动态特性分析及其实验研究[D].博士论文,北京:清华大学,2002,111—116.
计量
- 文章访问数: 2578
- HTML全文浏览量: 129
- PDF下载量: 586
- 被引次数: 0