Application of Wavelet Theory in Research on Weight Function of Meshless Method
-
摘要: 小波理论中多分辨率分析(MRA),可以提供在不同分辨率下分析表达信息的有效途径.基于样条小波多分辨率分析,将无单元中的权函数投影到尺度空间去研究,尝试一种新的权函数研究方法,并给出了算例.Abstract: Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis, so weight function is orthonormally projected onto a sequence of closed spline subspaces, and is viewed at various levels of approximations or different resolutions. Now, the useful new way to research weight function is found, and the numerical result is given.
-
Key words:
- meshless method /
- weight function /
- spline wavelet /
- multiresolution analysis
-
[1] Belytschko T,Lu Y Y,Gu L.Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37:229—256. doi: 10.1002/nme.1620370205 [2] Monaghan J.An introduction to SPH[J].Computer Physics Communication,1988,48:89—96. doi: 10.1016/0010-4655(88)90026-4 [3] Liu W K,Jun S,Zhang S.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids,1995,20:1081—1106. doi: 10.1002/fld.1650200824 [4] Melenk J M,Babuska I.The partition of unity finite element method: basic theory and application[J].Computer Methods in Applied Mechanics Engineering,1996,139:289—314. doi: 10.1016/S0045-7825(96)01087-0 [5] 周小平.对进一步发展无单元法的几点设想[J].福州大学学报,2001,29(3):84—87. [6] Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(r)[J].Trans of the American Mathematical Society,1989,315:69—87. [7] 赵松年,熊小芸.小波变换与子波分析[M].北京:电子工业出版社,1992. [8] Charles K C.An Introduction to Wavelet[M].Academic Press,1992. [9] 张选兵.基于敏感性分析和小波分析的无单元研究[D].武汉:中国科学院武汉岩土力学研究所,2002,06.
计量
- 文章访问数: 2674
- HTML全文浏览量: 183
- PDF下载量: 650
- 被引次数: 0