Long Time Behavior for the Solution of the Initial-Boundary Value Problem of One Class of Systems With Multidimensional Inhomogeneous GBBM Equations
-
摘要: 研究一类多维非齐次广义Benjamin-Bona-Mahony(GBBM)方程的初值边界问题,利用Sobolev插值不等式,做关于时间的一致性先验估计,证明该问题的整体吸引子的存在性.Abstract: The following initial-boundary value problem for the systems with multidimensional inhomogeneous generalized Benjamin-Bona-Mahony (GBBM) equations is reviewed.The existence of global attractors of this problem was proved by means of a uniform a priori estimate for time.
-
Key words:
- multidimensional GBBM equation /
- a apriori estimate /
- global attractor
-
[1] GUO Bo-ling.Initial boundary value problem for one class of system of multidimensional inhomogeneous GBBM equations[J].Chinese Ann Math,Ser B,1987,8(2):226—238. [2] GUO Bo-ling.The global solutions of some problems for a system of equations of Schrodinger-Klein Gordon field[J].Scientia Sinica,Ser A,1982,25(3):898—901. [3] Temam R.Infinite Dimensional Dynamical Systems in Mechanics and Physics[M].Berlin: Springer-Verlag,1988. [4] Constanntin P,Foias C,Temam R.Attractors respresenting turbulent flows[J].Mem Amer Math Soc,1985,(353):364. [5] Babin A V, Vishik M I.Attractors of partial differential equations and estimate of their dimension[J].Uspekhi Math Nauk,1983,38:133—187.
计量
- 文章访问数: 2803
- HTML全文浏览量: 134
- PDF下载量: 618
- 被引次数: 0