留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维粘弹性分层介质中平稳随机波的传播

高强 林家浩

高强, 林家浩. 三维粘弹性分层介质中平稳随机波的传播[J]. 应用数学和力学, 2005, 26(6): 723-733.
引用本文: 高强, 林家浩. 三维粘弹性分层介质中平稳随机波的传播[J]. 应用数学和力学, 2005, 26(6): 723-733.
GAO Qiang, LIN Jia-hao. Stationary Random Waves Propagation in 3D Viscoelastic Stratified Solid[J]. Applied Mathematics and Mechanics, 2005, 26(6): 723-733.
Citation: GAO Qiang, LIN Jia-hao. Stationary Random Waves Propagation in 3D Viscoelastic Stratified Solid[J]. Applied Mathematics and Mechanics, 2005, 26(6): 723-733.

三维粘弹性分层介质中平稳随机波的传播

基金项目: 国家自然科学基金资助项目(10472023);教育部高等学校博士学科点专项科研基金资助项目(20040141020)
详细信息
    作者简介:

    高强(1978- ),男,博士生(Tel:+86-411-84700230;E-mail:gaoqiang@student.dlut.edy.cn);林家浩(1941- ),男,教授,博士生导师(联系人.Tel+86-411-84709403;Fax:+86-411-84708400;E-mail:jilin@dlut.edu.cn).

  • 中图分类号: TU352

Stationary Random Waves Propagation in 3D Viscoelastic Stratified Solid

  • 摘要: 研究平稳随机波在粘弹性分层横观各向同性介质中的传播问题.将岩层考虑为分层介质,各层性质不同,岩层位于基岩上面,并且认为基岩比岩层刚很多,在基岩处给出随机激励.在频率和波数域中将控制方程化为常微分方程求解.对常微分方程,应用两点边值问题的精细积分法进行求解.因此,近年来发展的应用于结构随机振动的虚拟激励法可推广于当前分层岩层响应的计算.
  • [1] Ewing W M,Jardetzky W S,Press F.Elastic Waves in Layered Media[M].New York: McGral-Hill,1957.
    [2] Brekhovskikh L M.Waves in Layered Media[M].New York:Academic Press, 1980.
    [3] Aki K, Richards P G.Quantitative Seismology[M].San Francisco: W H Freeman and Company, 1980.
    [4] Timoshenko S P,Goodier J N.Theory of Elasticity[M].New York:McGraw-Hill, 1951.
    [5] Graff K F.Wave Motion in Elastic Solids[M].Oxford: Clarendon Press,1975.
    [6] Achenback J D.Wave Propagation in Elastic Solids[M].Amsterdam:the North-Holland,1973.
    [7] Doyle J F.Wave Propagation in Structures[M].New York: Springer, 1989.
    [8] Rizzi S A,Doyle J F.Spectral analysis of wave motion in plane solids with boundaries[J].Trans ASME Journal of Vibration and Acoustics,1992,114(2):133—140. doi: 10.1115/1.2930241
    [9] Rizzi S A,Doyle J F.Spectral element approach to wave motion in layered solids[J].Trans ASME Journal of Vibration and Acoustics,1992,114(4):569—577. doi: 10.1115/1.2930300
    [10] Alshaikh I A B U,Turhan D,Mengi Y. Two-dimensional transient wave propagation in viscoelastic layered media[J].Journal of Sound and Vibration,2001,244(5):837—858. doi: 10.1006/jsvi.2000.3532
    [11] Gulyayev V I,Lugovyy P Z,Ivanchenko G M. Discontinuous wave fronts propagation in anisotropic layered media[J].International Journal of Solids and Structures,2003,40(1):237—247. doi: 10.1016/S0020-7683(02)00517-6
    [12] Verma K L.On the propagation of waves in layered anisotropic media in generalized thermoelasticity[J].International Journal of Engineering Science,2002,40(20):2077—2096. doi: 10.1016/S0020-7225(02)00030-7
    [13] Caviglia G, Morro A. Reflection and transmission in anisotropic dissipative multilayers[J].European Journal of Mechanics A/Solids,2002,21(16):1055—1067. doi: 10.1016/S0997-7538(02)01252-4
    [14] Caviglia G, Morro A. Riccati equations for wave propagation in planarly-stratified solids[J].European Journal of Mechanics A/Solids,2000,19(4):721—741. doi: 10.1016/S0997-7538(00)00179-0
    [15] Caviglia G, Morro A. Wave propagation in multilayered anisotropic solids[J].International Journal of Engineering Science,2000,38(8):847—863. doi: 10.1016/S0020-7225(99)00062-2
    [16] Thomson C J.Modelling surface waves in anisotropic structures—Ⅰ:Theory[J].Physics of Earth and Planetary Interiors,1997,103(3):195—206. doi: 10.1016/S0031-9201(97)00033-2
    [17] ZHANG Jian-feng,LI You-ming.Numerical simulation of elastic wave propagation in inhomogeneous media[J].Wave Motion,1997,25(12):109—125. doi: 10.1016/S0165-2125(96)00022-4
    [18] Vashishth A K,Khurana P. Inhomogeneous waves in anisotropic porous layered overlying solid bedrock[J].Journal of Sound and Vibration,2002,258(4):577—594. doi: 10.1006/jsvi.2002.5175
    [19] Khoury R A L,Scarpas A, Kasbergen C,et al. Spectral element technique for effecient parameter identification of layered media—Part Ⅲ:Viscoelastic aspects[J].International Journal of Solids and Structures,2002,39(8):2189—2201. doi: 10.1016/S0020-7683(02)00079-3
    [20] Khoury R A L,Kasbergen C, Scarpas A,et al.Poroelastic spectral element for wave propagation and parameter identification in multi-layer systems[J].International Journal of Solids and Structures,2002,39(15):4073—4091. doi: 10.1016/S0020-7683(02)00260-3
    [21] ZHONG Wan-xie. The method of precise integration of finite strip and wave guide problems[A].In:Lee P K K, Tham L G,Cheung Y K Eds.Proceeding of International Conference on Computational Methods in Structural and Geotechnical Engineering[C].Hong Kong: China Translation & Printing Services Ltd,1994,51—59.
    [22] LIN Jia-hao.A fast CQC algorithm of PSD matrices for random seismic responses[J].Computers and Structures,1992,44(3):683—687. doi: 10.1016/0045-7949(92)90401-K
    [23] LIN Jia-hao,Williams F W,ZHANG Wen-shou.A new approach to multiphase-excitation stochastic seismic response[J].Microcomputers in Civil Engineering,1993,8(4):283—290.
    [24] Williams F W,Bennett P N,LIN Jia-hao.Localization investigation of stationary random wave transmission along damped ordered structural chains[J].Proc Inst Mech Engrs,Part C,1997,211:217—228. doi: 10.1243/0954406971521791
    [25] LIN Jia-hao,FAN Yue,Bennett P N,et al.Propagation of stationary random waves along substructural chains[J].Journal of Vibration and Acoustics,1995,180(5):757—767.
    [26] LIN Jia-hao,ZHANG Wen-shou,LI Jian-jun.Structural responses to arbitrarily coherent stationary random excitations[J].Computers and Structures,1994,50(5):629—633. doi: 10.1016/0045-7949(94)90422-7
    [27] Kennett B L N.Seismic Wave Propagation in Stratified Media[M].Cambridge: Cambridge University Press, 1983.
    [28] 钟万勰.应用力学对偶体系[M]. 北京:科学出版社,2002.
  • 加载中
计量
  • 文章访问数:  2847
  • HTML全文浏览量:  161
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-01-08
  • 修回日期:  2004-12-06
  • 刊出日期:  2005-06-15

目录

    /

    返回文章
    返回