留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面弹性裂纹分析的一种有效边界元方法

闫相桥

闫相桥. 平面弹性裂纹分析的一种有效边界元方法[J]. 应用数学和力学, 2005, 26(6): 749-756.
引用本文: 闫相桥. 平面弹性裂纹分析的一种有效边界元方法[J]. 应用数学和力学, 2005, 26(6): 749-756.
YAN Xiang-qiao. An Effective Boundary Element Method for Analysis of Crack Problems in a Plane Elastic Plate[J]. Applied Mathematics and Mechanics, 2005, 26(6): 749-756.
Citation: YAN Xiang-qiao. An Effective Boundary Element Method for Analysis of Crack Problems in a Plane Elastic Plate[J]. Applied Mathematics and Mechanics, 2005, 26(6): 749-756.

平面弹性裂纹分析的一种有效边界元方法

基金项目: 国家自然科学基金资助项目(10272037)
详细信息
    作者简介:

    闫相桥(1959- ),男,河北东光人,教授,博导,博士(Tel:+86-451-86402367;Fax:+86-451-86402345;E-mail:Yanxiangqiao@hotmail.com).

  • 中图分类号: TB33

An Effective Boundary Element Method for Analysis of Crack Problems in a Plane Elastic Plate

  • 摘要: 提出了一种简单而有效的平面弹性裂纹应力强度因子的边界元计算方法.该方法由Crouch与Starfield建立的常位移不连续单元和闫相桥最近提出的裂尖位移不连续单元构成A·D2在该边界元方法的实施过程中,左、右裂尖位移不连续单元分别置于裂纹的左、右裂尖处,而常位移不连续单元则分布于除了裂尖位移不连续单元占据的位置之外的整个裂纹面及其它边界.算例(如单向拉伸无限大板中心裂纹、单向拉伸无限大板中圆孔与裂纹的作用)说明平面弹性裂纹应力强度因子的边界元计算方法是非常有效的.此外,还对双轴载荷作用下有限大板中方孔分支裂纹进行了分析.这一数值结果说明平面弹性裂纹应力强度因子的边界元计算方法对有限体中复杂裂纹的有效性,可以揭示双轴载荷及裂纹体几何对应力强度因子的影响.
  • [1] Cruse T A.Numerical evaluation of elastic stress intensity factors by boundary integral equation method[A].In:Swedlow J L Ed.Surface Cracks Physics Problems and Computational Solutions[C].New York:ASME,1972,153—170.
    [2] Cruse T A.Two dimensional BIE fracture mechanics analysis[J].Appl Math Modeling,1978,2(3):287—293. doi: 10.1016/0307-904X(78)90023-9
    [3] Blandford G E,Ingraffea A R,Liggett J A.Two-dimensional stress intensity factor computations using the boundary element method[J].Internat J Numer Methods Engrg,1981,17(4):387—404. doi: 10.1002/nme.1620170308
    [4] Crouch S L,Starfield A M.Boundary Element Method in Solid Mechanics[M]. London:Geore Allon & Unwin,1983,79—109.
    [5] Pan E.A general boundary element analysis of 2-D linear elastic fracture mechanics[J].Internat J Fracture,1997,28(1):41—59.
    [6] Portela A,Aliabadi M H,Rook D P. The dual boundary element method: effective implementation for crack problems[J].Internat J Numer Methods Engrg,1992,33(12):1269—1287. doi: 10.1002/nme.1620330611
    [7] Mi Y,Aliabadi M H.Dual-boundary element method for three dimensional fracture mechanics analysis[J].Engineering Analysis With Boundary Elements,1992,10(2):161—171. doi: 10.1016/0955-7997(92)90047-B
    [8] Tanaka M,Itoh H.New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities[J].Appl Math Modelling, 1987,11(4):357—363. doi: 10.1016/0307-904X(87)90030-8
    [9] Cruse T A.Boundary Element Analysis in Computational Fracture Mechanics[M].Dordrecht: Kluwer,1989,1—120.
    [10] Aliabadi M H,Rooke D P.Numerical Fracture Mechanics[M].Southampton: Computational Mechanics Publications and Dordrecht: Kluwer, 1991,1—150.
    [11] Aliabadi M H.Boundary element formulation in fracture mechanics[J].Applied Mechanics Review,1997,50(1):83—96. doi: 10.1115/1.3101690
    [12] YAN Xiang-qiao.A special crack-tip displacement discontinuity element[J].Mechanics Research Communications,2004,31(6):651—659. doi: 10.1016/j.mechrescom.2004.05.001
    [13] Kitagawa H,Yuuki R.Analysis of the non-linear shaped cracks in a finite plate by the conformal mapping method[J].Trans Japan Soc Mech Engrs,1977,43(376):4354—4362. doi: 10.1299/kikai1938.43.4354
    [14] Murakami Y.A method of stress intensity factor calculation for the crack emanating from an arbitrarily shaped hole or the crack in the vicinity of an arbitrarily shaped hole[J].Trans Japan Soc Mech Engrs,1978,44(378):423—432. doi: 10.1299/kikai1938.44.423
    [15] Murakami Y.Stress Intensity Factors Handbook[M].New York;Pergamon Press,1987,266—267.
    [16] Erdogan F,Gupta G D,Ratwani M.Interaction between a circular inclusion and an arbitrarily oriented crack[J].ASME J Appl Mech,1974,41(6):1007—1013. doi: 10.1115/1.3423424
  • 加载中
计量
  • 文章访问数:  2659
  • HTML全文浏览量:  135
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-09-05
  • 修回日期:  2004-12-17
  • 刊出日期:  2005-06-15

目录

    /

    返回文章
    返回