Well Posedness of Initial Value Problem for Euler Equations of Inviscid Compressible Adiabatic Fluid
-
摘要: 根据分层理论提供的基本方法,讨论Euler方程的初值问题的适定性,给出了方程的典型初边值问题适定性的判别条件,确定了Euler方程的局部(准确)解的解空间构造,对适定问题给出了解析解的计算公式.Abstract: The well-posedness of the initial value problem of the Euler equations was mainly discussed based on the stratification theory, and the necessary and sufficient conditions of well-posedness are presented for some representative initial or boundary value problem, thus the structure of solution space for local (exact) solution of the Euler equations is determined. Moreover the computation formulas of the analytical solution of the well-posed problem are also given.
-
[1] 李大潜,秦铁虎.物理学与偏微分方程(上册)[M].北京:高等教育出版社,1997,96—106. [2] SHIH Wei-hui.Solutions Analytiques de Quelques Equations aux Derives Partielles en Mecanique des Fluides[M].Paris: Hermann Paris, 1992. [3] 沈臻.关于不可压、无粘流体的Euler方程初值问题的适定性(Ⅰ)、(Ⅱ)[J].应用数学和力学,2003,24(5):484—504. [4] Landau L,Lifchitz E.Mecanique des Fluides[M].Moscou: Editions Mir, 1971,10—13. [5] 施惟慧,陈达段,何幼桦.分层理论与非线性偏微分方程基础[M].上海:上海大学出版社,2001.
计量
- 文章访问数: 2767
- HTML全文浏览量: 149
- PDF下载量: 783
- 被引次数: 0