Analysis on the Stability of an Autonomous Dynamics System for SARS Epidemic
-
摘要: 在K-M传染病模型的基础上,进一步考虑易感人群的密度制约以及患病者类的死亡与治愈率等因素,建立了描述SARS传染病的一个新的动力学模型,分析了该模型平衡点的稳定性态.证明了疾病消除平衡点在一定条件下是全局渐进稳定的,而地方病平衡点不是渐近稳定的.得到了该传染病系统在适当条件下为永久持续生存的结果.Abstract: An extended dynamic model for SARS epidemic was deduced on the basis of the K-M infection model with taking the density constraint of susceptible population and the cure and death rate of patients into consideration. It is shown that the infection-free equilibrium is global asymptotic stability for under given conditions, and endemic equilibrium is not asymptotic stability. It comes to the conclusion that the epidemic system is permanent persistence existence under appropriate conditions.
-
Key words:
- infection model /
- SARS epidemic /
- equilibrium point /
- asymptotic stability
-
[1] Riley S,Fraser C,Donnelly C A,et al.Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions[J/OL]. Sciencexpress/www.sciencexpress.org/23 May 2003/ Page 1/10.1126/ science.1086478. [2] Lipsitch M,Cohen T,Cooper B,et al.Transmission Dynamics and Control of Severe Acute Respiratory Syndrome[J/OL]. Sciencexpress/www.sciencexpress.org/23 May 2003/ Page 1/10.1126/ science.1086616. [3] 王铎,赵晓飞.SARS疫情的实证分析和预测[J].北京大学学报(医学版),2003,35(增刊):72—74. [4] 陈兰荪,陈键.非线性生物动力系统[M].北京:科学出版社,1993,111—162. [5] Thieme H R.Persistence under relaxed point-dissipativity (with application to an endemic model)[J].SIAM J Math Anal,1993,24(2):407—435. doi: 10.1137/0524026
计量
- 文章访问数: 2865
- HTML全文浏览量: 132
- PDF下载量: 734
- 被引次数: 0