留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解考虑颗粒凝并的通用动力学方程的多重MonteCarlo算法

赵海波 郑楚光 徐明厚

赵海波, 郑楚光, 徐明厚. 求解考虑颗粒凝并的通用动力学方程的多重MonteCarlo算法[J]. 应用数学和力学, 2005, 26(7): 875-882.
引用本文: 赵海波, 郑楚光, 徐明厚. 求解考虑颗粒凝并的通用动力学方程的多重MonteCarlo算法[J]. 应用数学和力学, 2005, 26(7): 875-882.
ZHAO Hai-bo, ZHENG Chu-guang, XU Ming-hou. Multi-Monte Carlo Method for General Dynamic Equation Considering Particle Coagulation[J]. Applied Mathematics and Mechanics, 2005, 26(7): 875-882.
Citation: ZHAO Hai-bo, ZHENG Chu-guang, XU Ming-hou. Multi-Monte Carlo Method for General Dynamic Equation Considering Particle Coagulation[J]. Applied Mathematics and Mechanics, 2005, 26(7): 875-882.

求解考虑颗粒凝并的通用动力学方程的多重MonteCarlo算法

基金项目: 国家重点基础研究专项经费资助项目(2002CB211602);国家自然科学基金资助项目(重点)(90410017)
详细信息
    作者简介:

    赵海波(1977- ),男,湖南宁乡人,讲师,博士(联系人.Tel/Fax:+86-27-87545526;E-mail:klinsmannzhb@163.com).

  • 中图分类号: O343.5

Multi-Monte Carlo Method for General Dynamic Equation Considering Particle Coagulation

  • 摘要: Monte Carlo(MC)方法被广泛用于通用动力学方程的求解,然而普通MC方法的计算代价较高而计算精度不稳定.提出一种新的多重Monte Carlo(MMC)算法来求解GDE,该算法同时具有基于时间驱动MC方法、常数目法和常体积法的特点.首先详细介绍了该算法,包括加权虚拟颗粒的引入,MMC算法的计算流程,时间步长的设置,颗粒是否发生凝并事件的判断,凝并伙伴的寻找,凝并事件的后果处理.然后利用MMC算法对存在理论分析解的5种特殊工况进行数值求解,模拟结果与理论解符合很好,证明MMC算法具有良好的计算精度和较低的计算代价.最后分析了不同类型的凝并核对于凝并过程的影响,常凝并核和连续区布朗凝并核对小颗粒影响大一些,而线性凝并核和二次方凝并核对大颗粒影响大一些.
  • [1] Tucker W G. An overview of PM 2.5 sources and control strategies[J].Fuel Processing Technology,2000,65(1):379—392. doi: 10.1016/S0378-3820(99)00105-8
    [2] Meng Z,Dabdub D,Seinfeld J H. Size-resolved and chemically resolved model of atmospheric aerosol dynamics[J].Journal of Geophysical Research,1998,103(3):3419—3435. doi: 10.1029/97JD02796
    [3] Debry E,Sportisse B,Jourdain B. A stochastic approach for the numerical simulation of the general dynamics equation for aerosols[J].Journal of Computational Physics,2003,184(2):649—669. doi: 10.1016/S0021-9991(02)00041-4
    [4] Liffman K. A direct simulation Monte Carlo method for cluster coagulation[J].Journal of Computational Physics,1992,100(1):116—127. doi: 10.1016/0021-9991(92)90314-O
    [5] Kruis F E,Maisels A,Fissan H. Direct simulation Monte Carlo method for particle coagulation and aggregation[J].AICHE Journal,2000,46(9):1735—1742. doi: 10.1002/aic.690460905
    [6] Smith M,Matsoukas T. Constant-number Monte Carlo simulation of population balances[J].Chemical Engineering Science,1998,53(9):1777—1786. doi: 10.1016/S0009-2509(98)00045-1
    [7] Lee K,Matsoukas T. Simultaneous coagulation and break-up using constant-N Monte Carlo[J].Powder Technology,2000,110(1/2):82—89. doi: 10.1016/S0032-5910(99)00270-3
    [8] Lin Y,Lee K,Matsoukas T. Solution of the population balance equation using constant-number Monte Carlo[J].Chemical Engineering Science,2002,57(12):2241—2252. doi: 10.1016/S0009-2509(02)00114-8
    [9] Nanbu K. Direct simulation scheme derived from the Boltzmann equation Ⅰ-Monocomponent gases[J].Journal of the Physical Society of Japan,1980,49(11):2042—2049. doi: 10.1143/JPSJ.49.2042
    [10] Nanbu K,Yonemura S. Weighted particles in coulomb collision simulations based on the theory of a cumulative scattering angle[J].Journal of Computational Physics,1998,145(2):639—654. doi: 10.1006/jcph.1998.6049
    [11] ZHAO Hai-bo,ZHENG Chu-guang,XU Ming-hou. Multi-Monte Carlo method for particle coagulation:description and validation[J].Applied Mathematics and Computation,2005,168(2):.
    [12] Friedlander S K,Wang C S. The self-preserving particle size distribution for coagulation by Brownian motion[J].Journal of Colloid and Interface Science,1966,22(1):126—132. doi: 10.1016/0021-9797(66)90073-7
    [13] Lee K W,Lee Y J,Han D S. The log-normal size distribution theory for Brownian coagulation in the low Knudsen number regime[J].Journal of Colloid and Interface Science,1997,188(2):486—492. doi: 10.1006/jcis.1997.4773
  • 加载中
计量
  • 文章访问数:  2553
  • HTML全文浏览量:  109
  • PDF下载量:  1372
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-08-12
  • 修回日期:  2005-03-08
  • 刊出日期:  2005-07-15

目录

    /

    返回文章
    返回