留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夹层压电材料中垂直于界面的共线双裂纹动力学问题分析

曲贵民 周振功 王彪

曲贵民, 周振功, 王彪. 夹层压电材料中垂直于界面的共线双裂纹动力学问题分析[J]. 应用数学和力学, 2005, 26(10): 1152-1160.
引用本文: 曲贵民, 周振功, 王彪. 夹层压电材料中垂直于界面的共线双裂纹动力学问题分析[J]. 应用数学和力学, 2005, 26(10): 1152-1160.
QU Gui-min, ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Collinear Permeable Cracks in a Piezoelectric Layer Bonded to Two Half Spaces[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1152-1160.
Citation: QU Gui-min, ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Collinear Permeable Cracks in a Piezoelectric Layer Bonded to Two Half Spaces[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1152-1160.

夹层压电材料中垂直于界面的共线双裂纹动力学问题分析

基金项目: 国家自然科学基金资助项目(10172030;50232030);国家科技部八六三项目(2001AA31304);黑龙江省杰出青年基金资助项目(JC04-08);黑龙江省教育厅基金资助项目(10541047)
详细信息
    作者简介:

    曲贵民(1962- ),男,辽宁人,教授,博士(联系人.Tel:+86-451-86390831;Fax:+86-451-86390830;E-mail:qugmh@yahoo.com.cn).

  • 中图分类号: O345.51

Dynamic Behavior of Two Collinear Permeable Cracks in a Piezoelectric Layer Bonded to Two Half Spaces

  • 摘要: 采用Schmidt方法分析了在简谐反平面剪切波作用下,两个半空间夹层压电材料中的共线裂纹的动力学行为.压电材料层内裂纹垂直于界面,电边界条件假设为可导通.通过Fourier变换,使问题的求解转换为两对三重积分对偶方程.通过数值计算,给出了裂纹的几何尺寸、压电材料常数、入射波频率等对于应力强度因子的影响.结果表明,在不同的入射波频率范围,动力场将阻碍或促使压电材料内裂纹的扩展.与不可导通电边界条件相比,导通裂纹表面的电位移强度因子比不可导通裂纹的电位移强度因子要小许多.
  • [1] Deeg W E F.The analysis of dislocation, crack and inclusion problems in piezoelectric solids[D].Ph D thesis.Palo Alto:Stanford University,1980.
    [2] Pak Y E.Crack extension force in a piezoelectric material[J].Journal of Applied Mechanics,1990,57(4):647—653. doi: 10.1115/1.2897071
    [3] Suo Z,Kuo C M,Barnett D M,et al.Fracture mechanics for piezoelectric ceramics[J].Journal of Mechanics and Physics of Solids,1992,40(5):739—765. doi: 10.1016/0022-5096(92)90002-J
    [4] Gao H,Zhang T Y,Tong P.Local and global energy rates for an elastically yielded crack in piezoelectric ceramics[J].Journal of Mechanics and Physics of Solids,1997,45(4):491—510. doi: 10.1016/S0022-5096(96)00108-1
    [5] ZHOU Zhen-gong,WANG Biao,CAO Mao-sheng.Analysis of two collinear cracks in a piezoelectric layer bonded to dissimilar half spaces subjected to anti-plane shear[J].European Journal of Mechanics A/ Solids,2001,20(2):213—226. doi: 10.1016/S0997-7538(00)01108-6
    [6] Suo Z.Models for breakdown-resistant dielectric and ferroelectric ceramics[J].Journal of the mechanics and Physics of Solids,1993,41(6):1155—1176. doi: 10.1016/0022-5096(93)90088-W
    [7] Zhang T Y,Tong P.Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J].International Journal of Solids and Structures,1996,33(5):343—359. doi: 10.1016/0020-7683(95)00046-D
    [8] Sosa H,Khutoryansky N.Transient dynamic response of piezoelectric bodies subjected to internal electric impulses[J].International Journal of Solids and Structures,1999,36(9):5467—5484. doi: 10.1016/S0020-7683(98)00246-7
    [9] Soh A K,Fang D N,Lee K L.Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading[J].European Journal of Mechanics, A/Solid,2000,19(6):961—977. doi: 10.1016/S0997-7538(00)01107-4
    [10] ZHOU Zhen-gong,CHEN Jun-ying,WANG Biao.Analysis of two collinear cracks in a piezoelectric layer bonded to two half spaces subjected to anti-plane shear[J].Meccanica,2000,35(5):443—456. doi: 10.1023/A:1010351615603
    [11] 周振功,王彪.采用新方法研究加层压电材料中平行界面共线双裂纹的断裂问题[J].应用数学和力学,2003,24(1):1—11.
    [12] YU Shou-wen,CHEN Zeng-tao.Transient response of a cracked infinite piezoelectric strip under anti-plane impact[J].Fatigue and Engineering Materials and Structures,1998,21(10):1381—1388. doi: 10.1046/j.1460-2695.1998.00108.x
    [13] ZHOU Zhen-gong,LIANG Jun,WANG Biao.Two collinear permeable cracks in a piezoelectric layer bonded to two half spaces[J].Meccanica,2003,38(4):467—475. doi: 10.1023/A:1024672419875
    [14] Morse P M,Feshbach H.Methods of Theoretical Physics[M].Vol 1.New York:McGraw-Hill,1958.
    [15] Srivastava K N,Palaiya K N,Karaulia D S.Interaction of shear waves with two coplanar Griffith cracks situated in an infinitely long elastic strip[J].International Journal of Fracture,1983,23(1):3—14. doi: 10.1007/BF00020153
    [16] Gradshteyn I S,Ryzhik I M.Table of Integral,Series and Products[M].New York:Academic Press, 1980.
    [17] Erdelyi A.Tables of Integral Transforms[M].Vol 1.New York:McGraw-Hill,1954.
  • 加载中
计量
  • 文章访问数:  2565
  • HTML全文浏览量:  106
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-06-18
  • 修回日期:  2005-05-23
  • 刊出日期:  2005-10-15

目录

    /

    返回文章
    返回