Diamond Port Jet Interaction With Supersonic Flow
-
摘要: 基于在不同射流角(10°, 27.5°, 45°, 90°)和射流总压(0.1 MPa, 0.46 MPa)下,对音速次膨胀射流通过菱形口喷射到马赫5横穿主流的实验及圆形射流器的对比实验,研究了次膨胀射流与超音横穿主流相互作用流场, 实验包括横截面流场的Pitot和锥静压力, 获得横截面马赫数、 压力分布.结果表明近壁面低马赫数半圆区为尾区,尾区附近边界层减薄.脱体激波高度向自由流扩展,激波形状更弯曲, 低马赫数区较大.高射流压力和射流角增加羽流涡度,激波位置较高.90°菱形和圆形喷射器有更强的羽流涡度,但圆形喷射器的低马赫数区较小.前沿渐细的变壁面的斜面物增加羽流涡度,反之,双变壁面的斜面物减弱羽流涡度.通过表面激波形状、中心平面激波及横截面激波模化三维激波形状,激波总压损失用正激波关系式通过马赫数法向分量估计.激波总压损失随射流角和动压比的减小而减小,最大损失发生在90°圆形和菱形喷射器.
-
关键词:
- 菱形喷射器 /
- 射流与横穿主流相互作用 /
- 相互作用激波 /
- 反旋涡对 /
- 混合
Abstract: Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 and 0.46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Cross-section Mach number contours were acquired by a Pitot-cone five-hole pressure probe. The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and cross-sectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure, where the largest losses are incurred by the 90 degrees, circular injector. -
[1] Weber R,Mckay J.Analysis of ramjet engines using supersonic combustion[R]. Washington DC: National Aeronautics and Space Administration,NASA TN-4386,1958. [2] Mccann G J,Bowersox R D W.Experimental investigation of supersonic gaseous injection into a supersonic freestream[J].AIAA J,1996,34(2):317—323. doi: 10.2514/3.13066 [3] Schetz J A,Billig F S.Penetration of gaseous jets injected into a supersonic stream[J].Journal of Spacecraft,1966,3(11):1658—1665. doi: 10.2514/3.28721 [4] Chenault L,Beran P,Bowersox R.Second-order Reynolds stress turbulence modeling of three-dimensional oblique supersonic injection[J].AIAA J,1999,37(10):1257—1269. doi: 10.2514/2.594 [5] Bowersox R D W,Schetz J A.Compressible turbulence measurements in a high-Reynolds-number mixing layer[J].AIAA J,1994,32(4):758—764. doi: 10.2514/3.12050 [6] Schetz J A,Thomas R H,Billig F S.Mixing of transverse jets and wall jets in supersonic flow[A].In:Kozlov V V,Dovgal A V Eds.Separated Flows and Jets.IUTAM Symposium[C].Berlin:Springer-Verlag,1990,807—837. [7] Barber M,Schetz J,Roe L.Normal sonic helium injection through a wedge-shaped orifice into a supersonic flow[J].Propulsion and Power,1997,13(2):257—263. doi: 10.2514/2.5157 [8] Fan H,Bowersox R.Gaseous injection through diamond orifices at various incidence angles into a hypersonic freestream[A].In:AIAA Ed.39th AIAA Aerospace Sciences Meeting & Exhibit[C].Reston, USA: American Institute of Aeronautics and Astronautics,AIAA Paper 2001-1050,2001. [9] Wilson M P,Bowersox R D W,Glawe D D.Experimental investigation of the role of downstream ramps on a supersonic injection plume[J].Journal of Propulsion and Power,1999,15(3):432—439. doi: 10.2514/2.5462 [10] Mcclinton C.The effects of injection angle on the interaction between sonic secondary jets and a supersonic freestream[R]. Washington DC: National Aeronautics and Space Administration,NASA TN D-6669,1972. [11] Volluz R.Handbook of supersonic aerodynamics[R]. Section 20.Wind Tunnel Instrumentation and Operation,Vol 6,Ordnance Aerophysics Lab, NAVORD Rept 1488, Daingerfield, TX 1961. [12] White F.Viscous Fluid Flow[M].New York:McGraw-Hill,1991.
计量
- 文章访问数: 2616
- HTML全文浏览量: 109
- PDF下载量: 753
- 被引次数: 0