留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利普希茨伪紧缩映射下的利普希茨摄动迭代的Bruck公式

K·库玛 B·K·沙玛

K·库玛, B·K·沙玛. 利普希茨伪紧缩映射下的利普希茨摄动迭代的Bruck公式[J]. 应用数学和力学, 2005, 26(11): 1293-1300.
引用本文: K·库玛, B·K·沙玛. 利普希茨伪紧缩映射下的利普希茨摄动迭代的Bruck公式[J]. 应用数学和力学, 2005, 26(11): 1293-1300.
Krishna Kumar, B. K. Sharma. Bruck Formula for a Perturbed Lipschitzian Iteration of Lipschitz Pseudocontractive Maps[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1293-1300.
Citation: Krishna Kumar, B. K. Sharma. Bruck Formula for a Perturbed Lipschitzian Iteration of Lipschitz Pseudocontractive Maps[J]. Applied Mathematics and Mechanics, 2005, 26(11): 1293-1300.

利普希茨伪紧缩映射下的利普希茨摄动迭代的Bruck公式

详细信息
    作者简介:

    B·K·沙玛,教授(联系人.Email:sharmabk_nib@sancharnet.in).

  • 中图分类号: O177.91

Bruck Formula for a Perturbed Lipschitzian Iteration of Lipschitz Pseudocontractive Maps

  • 摘要: 在非线性分析中,处理伪紧缩算子及其变形的解(不动点)存在性和近似性,从而使演化方程的求解已经发展成为一个独立的理论.使用近似不动点技术,采用摄动迭代方法,目的是证明利普希茨伪紧缩映射序列的收敛性.该迭代方法适用于比利普希茨伪紧缩算子更一般的非线性算子以及Bruck迭代法无法证明其收敛性的情况.推广了Chidume和Zegeye的结果.
  • [1] Browder F E.Nonlinear mappings of nonexpansive and accretive type in Banach space[J].Bull Amer Math Soc,1967,73:875—882. doi: 10.1090/S0002-9904-1967-11823-8
    [2] Zeidler E.Nonlinear Functional Analysis and its Applications[M].Part-Ⅱ A;Linear Monotone Operater;Part Ⅱ B;Nonlinear Monotone Operators,(Berlin/New York:Springer Verlag),1985.
    [3] Chidume C E,Moore C.The solution by iteration of nonlinear equation in uniformly smooth Banach space[J].J Math Anal Appl,1997,215:132—146. doi: 10.1006/jmaa.1997.5628
    [4] Mann W R.Mean values methods in iteration[J].Proc Amer Math Soc,1953,4:506—510. doi: 10.1090/S0002-9939-1953-0054846-3
    [5] Osilike M O.Iterative solution of nonlinear equations of the -strongly accretive type[J].J Math Anal Appl,1996,200:259—271. doi: 10.1006/jmaa.1996.0203
    [6] Qihou L.The convergence theorems of the sequences of Ishikawa iterates for hemicontractive mappings[J].J Math Anal Appl,1990,148:55—62. doi: 10.1016/0022-247X(90)90027-D
    [7] Riech S.Iterative methods for accretive sets[A].In:Nonlinear Equation in Abstract Spacs[C].New York:Academic Press,1978,317—326.
    [8] 张石生.Φ-伪压缩型映象的具误差的Ishikawa和Mann迭代程序的收敛性问题[J].应用数学和力学,2000,21(1):1—10.
    [9] Geobel K.On the structure of minimal invarient sets for non-expansive mappings[J].Ann Univ Marie Curie-Sklodowska,1975,29:73—77.
    [10] Karlovitz L A.On nonexpansive mappings[J].Proc Amer Math Soc,1976,55:321—325. doi: 10.1090/S0002-9939-1976-0405182-X
    [11] Ray W O.Nonexpansive mappings on unbounded convex domains[J].Bull Acad Polon Sci Ser Math Astronorm Phys,1978,26:241—245.
    [12] Ray W O.The fixed point property and unbounded sets in Hlbert space[J].Trans Amer Math Soc,1980,258:531—537. doi: 10.1090/S0002-9947-1980-0558189-1
    [13] Simeon Reich.The almost fixed point property for nonexpansive mappings[J].Proc Amer Math Soc,1983,88:44—46. doi: 10.1090/S0002-9939-1983-0691276-4
    [14] Petryshyn W V.Construction of fixed points of demicompact mappings in Hilbert space[J].J Math Anal Appl,1966,14:276—284. doi: 10.1016/0022-247X(66)90027-8
    [15] Chidume C E.On the approximation of fixed points of non-expansive mappings[J].Houston J Math,1981,7:345—355.
    [16] Chidume C E,Mutangadura S A.An example on the Mann iteration method for Lipschitz pseudocontractions[J].Proc Amer Math Soc,2001,129:2359—2363. doi: 10.1090/S0002-9939-01-06009-9
    [17] Rhoades B E.Comments on two fixed point iteration methods[J].J Math Anal Appl,1976,56:741—750. doi: 10.1016/0022-247X(76)90038-X
    [18] Bruck R E Jr.A strongly convergent iterative method for the solution of 0∈U(x)for a maximal monotone opeartor U in Hilbert space[J].J Math Anal Appl,1974,48:114—126. doi: 10.1016/0022-247X(74)90219-4
    [19] Chidume C E,Zegeye H.Approximate fixed point sequences and convergence theorems for lipschitz pseudocontractive maps[J].Proc Amer Math Soc,2003,132(3):831—840.
    [20] Halpern B.Fixed points of nonexpanding maps[J].Bull Amer Math Soc,1967,73:957—961. doi: 10.1090/S0002-9904-1967-11864-0
    [21] Kato T.Nonlinear semigroups and evolution eauations[J].J Math Soc Japan,1967,19:508—520. doi: 10.2969/jmsj/01940508
    [22] Morales C H,Jung J S.Convergence of paths for pseudocontractive mappings in Banach spaces[J].Proc Amer Math Soc,2000,128:3411—3419. doi: 10.1090/S0002-9939-00-05573-8
    [23] Moore C,Nnoli B V C.Iterative solution of nonlinear equations involving set-valued uniformly accretive operators[J].Comput Math Appl,2001,42:131—140 doi: 10.1016/S0898-1221(01)00138-9
    [24] Ishiukawa S.Fixed points by a new iteration method[J].Proc Amer Math Soc,1974,44(1):147—150. doi: 10.1090/S0002-9939-1974-0336469-5
    [25] Ishiukawa S.Fixed points and iteration of a nonexpansive mapping in a Banach space[J].Proc Amer Math Soc,1976,59(1):65—71. doi: 10.1090/S0002-9939-1976-0412909-X
    [26] Lim T C,Xu H K.Fixed point theorems for asmptotically nonexpansive mappings[J].Nonlinear Anal TMA,1994,22:1345—1355. doi: 10.1016/0362-546X(94)90116-3
    [27] Qihou L.Iterative sequences for asymptotically quasinonexpansive mappings[J].J Math Anal Appl,2001,259:1—7. doi: 10.1006/jmaa.2000.6980
    [28] Krasnoselskij M A.Two remarks on the method of successive approximations[J].Uspchi Mat Nauk,1955,10:123—127.
  • 加载中
计量
  • 文章访问数:  2342
  • HTML全文浏览量:  124
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-12
  • 刊出日期:  2005-11-15

目录

    /

    返回文章
    返回