New Boundary Element Method for Torsion Problems of a Cylinder With Curvilinear Cracks
-
摘要: 研究含曲线裂纹圆柱的Saint-Venant扭转,将问题化归为裂纹上边界积分方程的求解.利用裂纹尖端的奇异元和线性元插值模型,给出了扭转刚度和应力强度因子的边界元计算公式.对圆弧裂纹、曲折裂纹以及直线裂纹的典型问题进行了数值计算,并与用Gauss-Chebyshev求积法计算的直裂纹情形结果进行了比较,证明了方法的有效性和正确性.
-
关键词:
- Saint-Venant扭转 /
- 曲线裂纹 /
- 边界积分方程 /
- 边界元 /
- 应力强度因子
Abstract: The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks.Using the interpolation models for both singular crack tip elements and other crack linear elements,the boundary element formulas of the torsion rigidity and stress intensity factors were given.Some typical torsion problems of a cylinder involving a straight,kinked or curvilinear crack were calculated.The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas,which demonstrates the validity and applicability of the present boundary element method. -
[1] 汤任基.裂纹柱的扭转理论[M].上海:上海交通大学出版社,1996,1—13. [2] 钱伟长,叶开沅.弹性力学[M].北京:科学出版社,1956,148—151. [3] Muskhelishvili N I.Singular Integral Equations[M].Holland: P Noordhoff LTD Groningen,1953,56—61. [4] TANG Ren-ji,WANG Yin-bang.On the problem of crack system with an elliptic hole[J].Acta Mechanica Sinica,1986,2(1):47—57. doi: 10.1007/BF02487881
计量
- 文章访问数: 2636
- HTML全文浏览量: 155
- PDF下载量: 643
- 被引次数: 0