留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维横观各向同性介质界面裂纹的边界积分方程方法

赵明皡 李冬霞 沈亚鹏

赵明皡, 李冬霞, 沈亚鹏. 三维横观各向同性介质界面裂纹的边界积分方程方法[J]. 应用数学和力学, 2005, 26(12): 1394-1400.
引用本文: 赵明皡, 李冬霞, 沈亚鹏. 三维横观各向同性介质界面裂纹的边界积分方程方法[J]. 应用数学和力学, 2005, 26(12): 1394-1400.
ZHAO Ming-hao, LI Dong-xia, SHEN Ya-peng. Interfacial Crack Analysis in Three-Dimensional Transversely Isotropic Bi-Materials by Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1394-1400.
Citation: ZHAO Ming-hao, LI Dong-xia, SHEN Ya-peng. Interfacial Crack Analysis in Three-Dimensional Transversely Isotropic Bi-Materials by Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1394-1400.

三维横观各向同性介质界面裂纹的边界积分方程方法

基金项目: 河南省高校新世纪优秀人才支持计划资助项目
详细信息
  • 中图分类号: O346.11

Interfacial Crack Analysis in Three-Dimensional Transversely Isotropic Bi-Materials by Boundary Integral Equation Method

  • 摘要: 基于两相三维横观各向同性介质的基本解和Somigliana恒等式,对三维横观各向同性介质中的任意形状的平片界面裂纹,以裂纹面上的不连续位移为待求参量建立了超奇异积分-微分方程,界面平行于横观各向同性面.根据发散积分的有限部积分理论,应用积分方程方法研究得到裂纹前沿的位移和应力场的表达式、奇性指数以及应力强度因子的不连续位移表达式.在非震荡情形下,超奇异积分-微分方程退化为超奇异积分方程,与均匀介质的超奇异积分方程形式完全相同.
  • [1] Hutchinson J W, Suo Z. Mixed-mode cracking in layered materials[J].Advances in Applied Mechanics,1992,29:63—191.
    [2] Ting T C T.Anisotropic Elasticity: Theory and Applications[M].New York:Oxford University Press,1996.
    [3] Choi S T, Shin H, Earmme Y Y. On the unified approach to anisotropic and isotropic elasticity for singularity, interface and crack in dissimilar media[J].Internat J Solids Structure,2003,40(6):1411—1431. doi: 10.1016/S0020-7683(02)00671-6
    [4] Keer L M, Chen S H, Comninou M.The interface penny-shaped crack reconsidered[J].Internat J Eng Sci,1978,16(10):765—772. doi: 10.1016/0020-7225(78)90009-5
    [5] 汤任基,陈梦成,乐金朝.三维界面裂纹的理论分析[J].中国科学,1998,28(2):177—182.
    [6] Lazarus V, Leblond J B.Three-dimensional crack-face weight functions for the semi-infinite interface crack—Ⅱ integrodifferential equations on the weight functions and resolution[J].J Mech Phys Solids,1998,46(3):513—536. doi: 10.1016/S0022-5096(97)00074-4
    [7] Pavlou D G.Green's function for the bimaterial elastic solid containing interface annular crack[J].Engineering Analysis With Boundary Elements,2002,26(10):845—853. doi: 10.1016/S0955-7997(02)00052-8
    [8] QU Jian-min, XUE Yi-bin.Three-dimensional interface cracks in anisotropic bimaterials: the non-oscillatory case[J].ASME J Appl Mech,1998,65(4):1048—1055. doi: 10.1115/1.2791899
    [9] ZHAO Ming-hao,SHEN Ya-peng,LIU Yuan-jie,et al.Method of analysis of cracks in three-dimensional transversely isotropic media: boundary integral equation approach[J].Engineering Analysis With Boundary Elements,1998,21(2):169—178. doi: 10.1016/S0955-7997(98)00033-2
    [10] Pan Y C,Chou T W.Green's functions for two-phase transversely isotropic materials[J].ASME J Appl Mech,1979,46(3):551—556. doi: 10.1115/1.3424604
  • 加载中
计量
  • 文章访问数:  2843
  • HTML全文浏览量:  119
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-05-17
  • 修回日期:  2005-08-17
  • 刊出日期:  2005-12-15

目录

    /

    返回文章
    返回