留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

乘积拓扑空间内的重合点组定理及应用(Ⅰ)

丁协平

丁协平. 乘积拓扑空间内的重合点组定理及应用(Ⅰ)[J]. 应用数学和力学, 2005, 26(12): 1401-1408.
引用本文: 丁协平. 乘积拓扑空间内的重合点组定理及应用(Ⅰ)[J]. 应用数学和力学, 2005, 26(12): 1401-1408.
DING Xie-ping. System of Coincidence Theorems in Product Topological Spaces and Applications(Ⅰ)[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1401-1408.
Citation: DING Xie-ping. System of Coincidence Theorems in Product Topological Spaces and Applications(Ⅰ)[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1401-1408.

乘积拓扑空间内的重合点组定理及应用(Ⅰ)

基金项目: 四川省教育厅重点研究基金资助项目(2003A081);四川省重点学科建设基金资助项目(0406)
详细信息
    作者简介:

    丁协平(1938- ),男,自贡人,教授(Tel:+86-28-84780952;E-mail:dingxip@sicnu.edu.cn)

  • 中图分类号: O177.92

System of Coincidence Theorems in Product Topological Spaces and Applications(Ⅰ)

  • 摘要: 首先引入了无凸性结构的有限连续拓扑空间(简称FC-空间)新概念.其次在FC-空间内建立了一个新的连续选择定理.应用此定理,在很弱的假设下,对定义在非紧FC-空间的乘积空间上的两个集值映射簇证明了某些新的重合点定理.这些结果推广了最近文献中的许多已知结果.某些应用将在后继文章中给出.
  • [1] von Neumann J.ber ein konomsiches Gleichungssystem und eine Verallgemeinering des Browerschen Fixpunktsatzes[J].Ergeb Math Kolloq,1937,8(1):73—83.
    [2] Browder F E.Coincidence theorems, minimax theorems,and variational inequalities[J].Contemp Math,1984,26:67—80. doi: 10.1090/conm/026/737389
    [3] DING Xie-ping.Coincidence theorems involving composites of acyclic mappings in contractible spaces[J].Appl Math Lett,1998,11(2):85—89.
    [4] DING Xie-ping.Coincidence theorems in topological spaces and their applications[J].Appl Math Lett,1999,12(7):99—105. doi: 10.1016/S0893-9659(99)00108-1
    [5] DING Xie-ping.Coincidence theorems and generalized equilibrium in topological spaces[J].Indian J Pure Appl Math,1999,30(10):1053—1062.
    [6] DING Xie-ping.Coincidence theorems involving composites of acyclic mappings and applications[J].Acta Math Sci,1999,19(1):53—61.
    [7] DING Xie-ping.Coincidence theorems with applications to minimax inequalities, section theorem and best approximation in topological spaces[J].Nonlinear Studies,2000,7(2):211—225.
    [8] DING Xie-ping,Park J Y.Continuous selection theorem,coincidence theorem,and generalized equilibrium in L-convex spaces[J].Comput Math Appl,2002,44(1/2):95—103. doi: 10.1016/S0898-1221(02)00132-3
    [9] Deguire P, Lassonde M.Familles sélectantes[J].Topol Methods Nonlinear Anal,1995,5(2):261—296.
    [10] Deguire P,Tan K K,Yuan G X Z. The study of maximal elements,fixed point for LS--majorijed mappings and their applications to minimax and variational inequalities in product topological spaces[J].Nonlinear Anal,1999,37(7):933—951. doi: 10.1016/S0362-546X(98)00084-4
    [11] 丁协平.乘积G-凸空间内的GB-优化映象的极大元及其应用(Ⅱ)[J].应用数学和力学,2003,24(9):899—905.
    [12] Ansari Q H,Idzik A,YAO J C.Coincidence and fixed points with applications[J]. Topol Methods Nonlinear Anal,2000,15(1):191—202.
    [13] Yu Z T,Lin L J.Continuous selection and fixed point theorems[J].Nonlinear Anal,2003,52(2):445—455. doi: 10.1016/S0362-546X(02)00107-4
    [14] Lin L J.System of coincidence theorems with applications[J].J Math Anal Appl,2003,285(2):408—418. doi: 10.1016/S0022-247X(03)00406-2
    [15] DING Xie-ping.Coincidence theorems for two families of set-valued mappings on product G-convex spaces[J].J Sichuan Normal Univ,2004,27(2):111—114.
    [16] DING Xie-ping.New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements[J]. Indian J Pure Appl Math,1995,26(1):1—19.
    [17] Park S.Continuous selection theorems in generalized convex spaces[J].Numer Funct Anal Optim,1999,20(5/6):567—583. doi: 10.1080/01630569908816911
    [18] Horvath C D.Some results on multivalued mappings and inequalities without convexity[A].In:Lin B L,Simons S Eds.Nonlinear and Convex Analysis[C].New York:Marcel Dekker,1987,99—106.
    [19] Horvath C D.Contractibility and general convexity[J].J Math Anal Appl,1991,156(2):341—357. doi: 10.1016/0022-247X(91)90402-L
    [20] Park S,Kim H.Coincidence theorems for admissible multifunctions on generalized convex spaces[J].J Math Anal Appl,1996,197(1):173—187. doi: 10.1006/jmaa.1996.0014
    [21] Park S,Kim H.Foundations of the KKM theory on generalized convex spaces[J].J Math Anal Appl,1997,209(2):551—571. doi: 10.1006/jmaa.1997.5388
    [22] Tan K K,Zhang X L.Fixed point theorems on G-convex spaces and applications[J].Nonlinear Funct Anal Appl,1996,1(1):1—19.
    [23] Tarafdar E.Fixed point theorems in H-spaces and equilibrium points of abstract economies[J].J Austral Math Soc,Ser A,1992,53(1):252—260. doi: 10.1017/S1446788700035825
  • 加载中
计量
  • 文章访问数:  2838
  • HTML全文浏览量:  213
  • PDF下载量:  917
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-10-10
  • 修回日期:  2005-08-17
  • 刊出日期:  2005-12-15

目录

    /

    返回文章
    返回