留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含孔薄板弯曲波动的双互易边界元法

高锁文 汪越胜 章梓茂 马兴瑞

高锁文, 汪越胜, 章梓茂, 马兴瑞. 含孔薄板弯曲波动的双互易边界元法[J]. 应用数学和力学, 2005, 26(12): 1417-1424.
引用本文: 高锁文, 汪越胜, 章梓茂, 马兴瑞. 含孔薄板弯曲波动的双互易边界元法[J]. 应用数学和力学, 2005, 26(12): 1417-1424.
GAO Suo-wen, WANG Yue-sheng. ZHANG Zi-mao, MA Xing-rui, . Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1417-1424.
Citation: GAO Suo-wen, WANG Yue-sheng. ZHANG Zi-mao, MA Xing-rui, . Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1417-1424.

含孔薄板弯曲波动的双互易边界元法

详细信息
    作者简介:

    高锁文(1963- ),男,河北人,副教授,博士(联系人.Tel:+86-10-68381024;E-mail:bjgsw@sina.com)

  • 中图分类号: O347.4

Dual Reciprocity Boundary Element Method for Flexural Waves in Thin Plate With Cutout

  • 摘要: 采用双互易边界元法对开孔无限大薄板弹性波的散射与动应力集中问题进行理论分析和数值计算.基于功的互等定理,采用静力基本解建立了薄板弯曲波动问题的双互易边界积分方程.作为数值算例,计算了圆孔附近的动应力集中系数,通过与已有结果进行比较,表明该方法简单有效并能够保证计算精度.
  • [1] 王铎,马兴瑞,刘殿魁. 弹性动力学最新进展[M].北京:科学出版社,1995,1—106.
    [2] Pao Y H.Dynamical stress concentration in an elastic plate[J].J Appl Mech,1962,29(2):299—305. doi: 10.1115/1.3640545
    [3] LIU Dian-kui,GAI Bing-zheng,TAO Gui-guan.Application of the method of complex functions to dynamic stress concentrations[J].Wave Motion,1982,4(3):293—304. doi: 10.1016/0165-2125(82)90025-7
    [4] Partridge P W,Brebbia C A,Wrobel L C.Dual Reciprocity Boundary Element Method[M].Southampton Boston: Comput Mech Pub,1992,1—176.
    [5] Nardini D,Brebbia C A.A new approach to free vibration analysis using boundary elements[A].In:Brebbia C A Ed.Boundary Elements Methods in Engineering[C].Berlin:Springer-Verlag,1982,312—326.
    [6] Kogl M,Gaul L.Free vibration analysis of anisotropic solids with the boundary element method[J].Engineering Analysis With Boundary Elements,2003,27(2):107—114. doi: 10.1016/S0955-7997(02)00088-7
    [7] Rodriguez J J,Power H.H-adaptive mesh refinement strategy for the boundary element method based on local error analysis[J].Engineering Analysis With Boundary Elements,2001,25(7):565—579. doi: 10.1016/S0955-7997(01)00014-5
    [8] Rodriguez J J,Power H.An adaptive dual reciprocity scheme for the numerical solution of the Poisson equation[J].Engineering Analysis With Boundary Elements,2002,26(4):283—300. doi: 10.1016/S0955-7997(02)00003-6
    [9] Chien C C,Chen Y H,Chuang C C.Dual reciprocity BEM analysis of 2D transient elastodynamic problems by time-discontinuous Galerkin FEM[J].Engineering Analysis With Boundary Elements,2003,27(6):611—624. doi: 10.1016/S0955-7997(02)00150-9
    [10] Itagaki M. Advanced dual reciprocity method based on polynomial source and its application to eigenvalue problem for nonuniform media[J].Engineering Analysis With Boundary Elements,2000,24(2):169—176. doi: 10.1016/S0955-7997(99)00052-1
    [11] Chen J T,Kuo S R,Chung I L,et al.Study on the true and spurious eigensolutions of two-dimensional cavities using the dual multiple reciprocity method[J].Engineering Analysis With Boundary Elements,2003,27(7):655—670. doi: 10.1016/S0955-7997(03)00019-5
    [12] Singh K M,Tanaka M.Dual reciprocity boundary element analysis of inverse heat conduction problems[J].Comput Methods Appl Mech Engrg,2001,190(40/41):5283—5295. doi: 10.1016/S0045-7825(01)00161-X
    [13] Albuquerque E L,Sollero P,Aliabadi M H.The boundary element method applied to time dependent problems in anisotropic materials[J].Internat J Solids and Structres,2002,39(5):1405—1422. doi: 10.1016/S0020-7683(01)00173-1
    [14] Albuquerque E L,Sollero P,Fedelinski P. Dual reciprocity boundary element method in Laplace domain applied to anisotropic dynamic crack problems[J].Computers and Structures,2003,81(17):1703—1713. doi: 10.1016/S0045-7949(03)00184-6
    [15] Chen W,Hon Y C.Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems[J].Comput Methods Appl Mech Engrg,2003,192(15):1859—1875. doi: 10.1016/S0045-7825(03)00216-0
    [16] 高锁文,王本利,马兴瑞. 开孔薄板弹性波散射与动应力集中[J].工程力学,2001,23(2):14—20.
  • 加载中
计量
  • 文章访问数:  3007
  • HTML全文浏览量:  112
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-06-25
  • 修回日期:  2005-09-01
  • 刊出日期:  2005-12-15

目录

    /

    返回文章
    返回