[1] |
Albano A M,Muench J M,Schwartz C,et al.Singular-value decomposition and the Grassberger-Procaccia algorithm[J].Phys Rev A,1988,38(6):3017—3026. doi: 10.1103/PhysRevA.38.3017
|
[2] |
Martin Casdagli,Stephen Eubank,Doyne Farmer J.State space reconstruction in the presence of noise[J].Phys Ser D,1991,51(10):52—98.
|
[3] |
YU De-jin,Michael Small,Robert G Harrison.Efficient implementation of the Gaussian kernel algorithm in estimating invariants and noise level from noisy time series data[J].Phys Rev Ser E,2000,61(4):3750—3756. doi: 10.1103/PhysRevE.61.3750
|
[4] |
Muller T G,Timmer J.Fitting parameters in partial differential equations from partially observed noisy data[J].Physica Ser D,2002,171(5):1—7.
|
[5] |
Degli Esposti Boschi C,Ortega G J,Louis E.Discriminating dynamical from additive noise in the Van der Pol oscillator[J].Physica Ser D,2002,171(5):8—18.
|
[6] |
Yu A,Kravtsov E D.Surovyatkin nonlinear saturation of prebifurcation noise amplification[J].Physics Letters Ser A,2003,319(10):348—351. doi: 10.1016/j.physleta.2003.10.034
|
[7] |
CAO Liang-yue,HONG Yi-guang,FANG Hai-ping,et al.Predicting chaotic timeseries with wavelet networks[J].Phys Ser D,1995,85(8):225—238.
|
[8] |
Castillo E,Gutierrez J M.Nonlinear time series modeling and prediction using functional networks. extracting information masked by chaos[J].Phys Lett Ser A,1998,244(5):71—84. doi: 10.1016/S0375-9601(98)00312-0
|
[9] |
Christian Schroer G,Tim Sauer, Edward Ott,et al.Predicting chaotic most of the time from embeddings with self-intersections[J].Phys Rev Lett,1998,80(7):1410—1412. doi: 10.1103/PhysRevLett.80.1410
|
[10] |
马军海,陈予恕,刘曾荣.动力系统实测数据的非线性混沌模型重构[J].应用数学和力学.1999,20(11):1128—1134.
|
[11] |
Kugiumtzis D,Lingjrde O C,Christophersen N.Regularized local linear prediction of chaotic timeseries[J].Phys Ser D,1998,112(6):344—360.
|
[12] |
Berndt Pilgram,Kevin Judd,Alistair Mees.Modelling the ddynamics odf nonlinear timeseries using canonical variate analysis[J].Phys Ser D,2002,170(4):103—117.
|