留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带斜拉索的索结构的特征频率分析

W·鲍尔森 G·施奈通

W·鲍尔森, G·施奈通. 带斜拉索的索结构的特征频率分析[J]. 应用数学和力学, 2006, 27(1): 35-46.
引用本文: W·鲍尔森, G·施奈通. 带斜拉索的索结构的特征频率分析[J]. 应用数学和力学, 2006, 27(1): 35-46.
William Paulsen, Greg Slayton. Eigenfrequency Analysis of Cable Structures With Inclined Cables[J]. Applied Mathematics and Mechanics, 2006, 27(1): 35-46.
Citation: William Paulsen, Greg Slayton. Eigenfrequency Analysis of Cable Structures With Inclined Cables[J]. Applied Mathematics and Mechanics, 2006, 27(1): 35-46.

带斜拉索的索结构的特征频率分析

详细信息
    作者简介:

    W·鲍尔森,教授,博士(联系人.Tel:+01-870-972-3090;Fax:+01-870-972-8485;E-mail:wpaulsen@csm.astate.edu).

  • 中图分类号: TU311.3;TU351;O175.9

Eigenfrequency Analysis of Cable Structures With Inclined Cables

  • 摘要: 计算了带斜拉索的索结构在面内振动的近似特征频率,该索结构的不同位置还带有质点.发现经典传递矩阵法已不足以解决此问题,因此采用较大的外矩阵来确定特征频率方程.然后在对外矩阵渐近估计的基础上,确定一般索结构的动力学性能.
  • [1] Irvine H M.Cable Structures[M].Cambridge:M I T Press,1981.
    [2] Simpson A.Determination of the inplane natural frequencies of multispan transmission lines by a transfer-matrix method[J].Proc IEEE,1966,113(5):870—878.
    [3] Triantafyllou M S.The dynamics of taut inclined cable[J].Quart J Mech Appl Math,1984,37(3):421—440. doi: 10.1093/qjmam/37.3.421
    [4] Abramowitz M,Stegun I.Handbook of Mathematical Functions[M].New York:Dover,1981.
    [5] Bender C M,Orszag S A.Advanced Mathematical Methods for Scientists and Engineers[M].New York:Springer-Verlag,1999.
    [6] Grinfogel L.Dynamics of elastic taut inclined cables[Z]. thesis presented to the Massachusetts Institute of Technoloy,at Cambridge M A,in partial fulfillment of the requirements for the degree of Master of Science,1984.
    [7] Paulsen W H.Eigenfrequencies of the non-collinearly coupled Euler-Bernoulli beam system with dissipative joints[J].Quarterly of Applied Mathematics,1997,55(3):437—457.
    [8] Krantz S G,Paulsen W H.Asymptotic eigenfrequency distributions for the N-beam Euler-Bernoulli coupled beam equation with dissipative joints[J].J Symbolic Computaion,1991,11:369—418. doi: 10.1016/S0747-7171(08)80111-3
    [9] Triantafyllou M S,Grinfogel L.Natural frequencies and modes of inclined cables[J].J Struct Engrg,1986,112(1):139—148. doi: 10.1061/(ASCE)0733-9445(1986)112:1(139)
    [10] Boothby W.An Introduction to Differentiable Manifolds and Riemannian Geometry[M].Orlando,Florida:Academic Press Inc,1986.
    [11] Irvine H M,Caughey T K.The linear theory of free vibrations of a suspended cable[J].Proc R Soc Lond,1974,341:299—315. doi: 10.1098/rspa.1974.0189
  • 加载中
计量
  • 文章访问数:  2962
  • HTML全文浏览量:  161
  • PDF下载量:  485
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-11-24
  • 修回日期:  2005-09-06
  • 刊出日期:  2006-01-15

目录

    /

    返回文章
    返回