Unconventional Hamilton-Type Variational Principles For Dynamics of Reissner Sandwich Plate
-
摘要: 根据古典阴阳互补和现代对偶互补的基本思想,通过早已提出的一条简单而统一的新途径,系统地建立了Reissner夹层板动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值-边值问题的全部特征.文中首先给出一个Reissner夹层板广义虚功原理的表式.然后从该式出发,不仅能得到Reissner夹层板动力学的虚功原理,而且通过所给出的一系列广义Legendre变换, 还能系统地成对导出五类变量、 二类变量和一类变量非传统Hamilton型变分原理的互补泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.
-
关键词:
- 非传统Hamilton型变分原理 /
- Reissner夹层板 /
- 动力学 /
- 对偶互补关系 /
- 初值-边值问题
Abstract: According to the basic idea of classical yin_yang complementarity and modern dual_complementarity,in a simple and unified way proposed by Luo(1987),some unconventional Hamilton_type variational principles for dynamics of Reissner sandwich plate can be established systematically.The unconventional Hamilton_type variation principle can fully characterize the initial_boundary_value problem of this dynamics.An important integral relation is given,which can be considered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not only to obtain the principle of virtual work,in dynamics of Reissner sandwich plate,but also to derive systematically the complementary functionals for five_field,two_field and one_field unconventional Hamilton_type variational principles by the generalized Legendre transformations.Furthermore,with this approach,the intrinsic relationship among the various principles can be explained clearly. -
[1] Reissner E.On bending of elastic plates[J].Quar of Appl Math,1947,5(1):55—68. [2] 柳春图,李国琛,吴永礼.夹层板的弯曲、稳定和振动[M].北京:科学出版社,1977,1—6. [3] 胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981,465—488. [4] 罗恩.关于线弹性动力学中各种Gurtin型变分原理[J].中国科学(A辑),1987,(9):936—948. [5] Luo En,Cheung Y K.On the variational principles in linear elastodynamics[J].Acta Mechanica Sinica,1988,4(4):337—349. doi: 10.1007/BF02486667 [6] 罗恩.几何非线性弹性动力学中的广义Hamilton型拟变分原理[J].中山大学学报(自然科学版),1990,29(2):15—19. [7] Finlayson B A.The Method of Weighted Residuals and Variational Principles[M].New York:Acad Press, 1972, 336—337.
计量
- 文章访问数: 2652
- HTML全文浏览量: 161
- PDF下载量: 880
- 被引次数: 0