留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有确定运动姿势的柔性体的动力学分析研究

杨元明 张伟 宋天霞 陈传尧

杨元明, 张伟, 宋天霞, 陈传尧. 具有确定运动姿势的柔性体的动力学分析研究[J]. 应用数学和力学, 2006, 27(1): 119-126.
引用本文: 杨元明, 张伟, 宋天霞, 陈传尧. 具有确定运动姿势的柔性体的动力学分析研究[J]. 应用数学和力学, 2006, 27(1): 119-126.
YANG Yuan-ming, ZHANG Wei, SONG Tian-xia, CHEN Chuan-yao. Dynamic Analysis of Flexible Body With Definite Moving Attitude[J]. Applied Mathematics and Mechanics, 2006, 27(1): 119-126.
Citation: YANG Yuan-ming, ZHANG Wei, SONG Tian-xia, CHEN Chuan-yao. Dynamic Analysis of Flexible Body With Definite Moving Attitude[J]. Applied Mathematics and Mechanics, 2006, 27(1): 119-126.

具有确定运动姿势的柔性体的动力学分析研究

基金项目: 河南省自然科学基金资助项目(0311011100)
详细信息
    作者简介:

    杨元明(1965- ),男,湖北人,副教授,博士(联系人.Tel:+86-377-63601892;Fax:+86-377-63121404;E-mail:yym7823@sina.com).

  • 中图分类号: O31.3

Dynamic Analysis of Flexible Body With Definite Moving Attitude

  • 摘要: 讨论了具有确定运动姿态的柔性多体系统的非线性动力学控制方程. 将飞行器在空间的运动看作是已知的,分析了飞行器上的挠性构件对飞行器运动和姿态的影响,利用假设模态,将挠性构件的变形,看作是空间直角坐标轴方向的线元振动所构成的,根据动力学中的Kane方法,建立了动力学方程,方程中包含表示弹性变形的结构刚度矩阵及表示变形体非线性变形几何刚度矩阵,方程推导从应力-应变关系入手,使用了有限元法.经简化,得到了带帆板结构的平面挠性体对飞行器运动影响的动力学方程,这种方程可通过计算机实现其数值解.
  • [1] Banerjee A K,Kane T R.Dynamics of a plate in Large overall motion[J].ASME J of Applied Mech,1989,56(1):887—892. doi: 10.1115/1.3176187
    [2] Kane T R,Ryan R R,Banerjee A K.Dynamics of a cantilever beam attached to a moving base[J].J of Guidance, Control and Dynamics,1987,10(2):135—151.
    [3] Kane T R,Ryan R R,Banerjee A K.Reply by authors to K W London[J].J of Guidance, Control and Dynamics,1989,12(2):286—287. doi: 10.2514/3.56488
    [4] Levinson D A,Kane T R.Autolev—A New Approach to Multi-Body Dynamics[M]. Berlin: Mutli-body Sastems Hand Book, W Schiehlen,eds.Springer-Verlag,1990,81—102.
    [5] Roberson K E,Schwertassek K.Dynamics of Multi-Body System[M].New York:Springer Verlag,1988,122—156.
    [6] Rosenthal K E,Shermand M A.High performance muiti-body simulations via symbolic equation manipulation and Kane's method[J].J of the Astranautical Sci,1986,34(3):223—239.
    [7] Likins P W.Geometric stiffness characteristics of a rotating elastic appendage[J].International J Solid and Structures,1974,10(2):161—167. doi: 10.1016/0020-7683(74)90015-8
    [8] Wu S C,Haug E J.Geometric nonlinear substructuring for dynamics of flexibly mechanical system[J].J for Numerical Method in Engineering,1989,44(3):135—146.
    [9] Zeiler T,Buttrill C.Dynamics Analysis of an Unrestrained Rotating Structure Through Nonlinear Simulation[M].AIAA 29th Structure Structural Dynamics and Materials Conference, Williamsburg,Va,Paper,1988,18—20.
    [10] Banerjee A K,Dickens J M.Dynamics of an arbitrary flexibly body in large rotation and translation[J].ASME J of Mech,1990,13(2):221—227.
    [11] Banerjee A K,Lemak M E.Multi-flexibly dynamics capturing motion induced stiffness[J].Transaction of the ASME,1991,58(4):113—121.
    [12] YANG Yuan-ming,GUO Jian-sheng.Dynamics modeling of the flexibly body with determined movement position[J].J of Huazhong University of Sci and Tech,1999,19(7):103—105.
    [13] YANG Yuan-ming,ZHANG Wei.Dynamics modeling of the flexibly multi-body[J].Acta Mechanica Solid Sinica,1999,20:153—158.
    [14] Kane T R,Likins P W,Levinson D A.Spacecraft Dynamics[M].New York:McGraw-Hill,1983,247.
  • 加载中
计量
  • 文章访问数:  2509
  • HTML全文浏览量:  116
  • PDF下载量:  539
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-06
  • 修回日期:  2005-08-16
  • 刊出日期:  2006-01-15

目录

    /

    返回文章
    返回