Invariant Form and Integral Invariants on Kähler Manifolds
-
摘要: 用现代微分几何理论和高等微积分把Poincaré和Cartan-Poincaré积分不变量的重要思想和结果以及E.Cartan在经典力学中首先建立的积分不变量和不变形式的关系推广到Kähler流形上的Hamilton力学中去,得到相应的更广泛的结果.Abstract: The important notions and results of the integral invariants of Poincar and Car tan-Poincar and the relationship between integral invariant and invariant form established first by E. Cartan in the classical mechanics are generalized to Hamilton mechanics on Kähler manifold by the theory of modern geometry and advanced calculus, to get wider and deeper related results.
-
Key words:
- Kähler manifold /
- symplectic manifold /
- invariant form /
- integal invariant /
- vector field /
- form field /
- Lie derivative /
- exterior differential
-
[1] Gantimaher F R.分析力学讲义[M].钟奉俄,薛问西 译.北京:北京人民教育出版社,1963,1—161. [2] Arnold V I.Mathematical Methods of Classical Mechanics[M].New York:Springer-Verlage,1978,1—300. [3] von Westenholz C.Differential Form in Mathematical Physics[M].Amsterdan,New York,Oxford:North-Holland Publishing Company,1978,355—439. [4] Curtis W D,Miller F R.Differential Manifolds and Theoretical Physics[M].U S A:Academic Press,Inc,1985,1—191. [5] Wells R O,Jr.Differential Analysis on Complex Manifolds[M].New York:Springer-Verlag,Inc,1980,1—216. [6] Kodaira Kunihiko.Complex Manifolds and Deformation of Complex Structures[M].New York:Springer-Verlag,Inc,1986. [7] Yvonne Chiuet-Bruhat,Ceciledewitt-Morette,Margaretdillard-Bleick.Analysis,Manifolds and Physics[M].Amsterdan,New York,Oxford:North-Holland Publishing Company,1977. [8] 陈省身,陈维桓.微分几何讲义[M].北京:北京大学出版社,1983. [9] 张荣业.Khler流形上的牛顿力学[J].应用数学和力学,1996,17(8):709—719.
计量
- 文章访问数: 3156
- HTML全文浏览量: 161
- PDF下载量: 887
- 被引次数: 0