Quasi-Static Analysis for Viscoelastic Timoshenko Beams With Damage
-
摘要: 从考虑损伤的粘弹性材料——一种卷积型本构关系出发,应用Timoshenko梁的基本变形假设,建立损伤粘弹性Timoshenko梁的静、动力学行为研究的数学模型.分析了损伤粘弹性Timoshenko梁在阶跃载荷作用下的准静态力学行为,在Laplace域中得到了挠度和损伤的解析表达式.应用数值逆变换技术,考察了材料粘性参数对梁的挠度和损伤的影响,得到不同时刻损伤和挠度随时间的变化曲线.
-
关键词:
- 损伤粘弹性固体 /
- Timosenko梁 /
- 拟静态力响应
Abstract: Based on convolution-type co nstitutive equations for linear visco elastic materials with damage and the hypotheses of Timoshenko beams,the equations governing quasi-static and dynamical behavior of Timoshenko beams with damage were first derived.The quasi-static behavior of the viscoelastic Timo shenko beam under step loading was analyzed and the analytical solution was obtained in the Laplace transformation domain.The deflection and damage curves at different time were obtained by using the numerical inverse transform and the influences of material parameters on the quasi-static behavior of the beam were investigated in detail.-
Key words:
- viscoelastic solids with damage /
- Timosenko beam /
- quasi-static response
-
[1] Argyris J.Chaotic vibrations of a nonlinear viscoelastic beam[J].Chaos Solitons Fractals,1996,7(1):151—163. doi: 10.1016/0960-0779(95)00097-6 [2] Akoz Y,Kadioglu F.The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams[J].Int J Numer Meth Engng,1999,44(12):1909—1932. doi: 10.1002/(SICI)1097-0207(19990430)44:12<1909::AID-NME573>3.0.CO;2-P [3] 陈立群,程昌钧.非线性粘弹性柱的稳定性和混沌运动[J].应用数学和力学,2000,21(9):890—896. [4] ZHU Zheng-you,LI Gen-guo,CHENG Chang-jun.Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation[J].Appl Math Mech,2002,23(1):1—10. [5] YANG Ting-qing.Theory of Viscoelasticity[M].Wuhan: Huazhong Unviersity of Science and Technology Press,1990. [6] Christensen R M.Theory of Viscoelasticity,An Introduction[M].Beijing: Academic Press,1990. [7] Cowin S C,Nunziato J W.Linear elastic materials with voids[J].Journal of Elasticity,1983,13:125—147. doi: 10.1007/BF00041230 [8] SHENG Dong-fa,CHENG Chang-jun,FU Ming-fu.Stress around a hole in viscoelastic body with voids[J].Chinese Quarterly of Mechanics,2003,24(1):30—35. [9] CHENG Chang-jun,ZHANG N H.Variational principles on static-dynamic analysis of viscoelastic thin plates with applications[J].Int J Solids and Structures, 1998,35(33):4491—4505. doi: 10.1016/S0020-7683(97)00262-X [10] Miller M K,Guy W T.Numerical inversion of the Laplace transform by use of Jacobi polynomials[J].SIAM J Numer Anal,1966,3(4):624—635. doi: 10.1137/0703055
计量
- 文章访问数: 2482
- HTML全文浏览量: 138
- PDF下载量: 552
- 被引次数: 0