Space-Time Finite Element Method for the Schrodinger Equation and Its Conservation
-
摘要: 对非线性Schr?dinger常微分方程,利用常微分方程连续有限元法证明了能量守恒;对非线性Schr?dinger偏微分方程利用时空都连续的全离散有限元方法证明了能量积分守恒和利用空间连续、时间间断的有限元法得到电荷近似守恒,误差为高阶量.并在数值计算上探讨了守恒性和近似程度,结果与理论相吻合.
-
关键词:
- 非线性Schr?dinger方程 /
- 时空有限元方法 /
- 能量积分 /
- 守恒性
Abstract: Energy conservation of non-linear Schrêdinger ordinary differential equation was proved through using ordinary differential equation's continuous finite element methods;Energy integration conservation was proved through using space-time all continuous fully discrete finite element methods and electron nearly conservation with higher order error through using time discontinuous only space continuos finite element methods of non-linear Schrêdinger partial equation.The numerical results are in accordance with the theory. -
[1] Delfour M,Fortin M,Payre G. Finite-difference solution of a non-linear Schrdinger equation[J].Journal of Computational Physics,1981,44(12):277—288. doi: 10.1016/0021-9991(81)90052-8 [2] Qhannes Karakashian,Charalambos Makridakis.A space-time finite element method for The nonlinear Schrdinger equation:the discontiouous Galerkin method[J].Mathematics of Computation,1998,67(1):479—499. doi: 10.1090/S0025-5718-98-00946-6 [3] 李宏,刘儒勋.抛物方程的时空有限元方法[J].应用数学和力学,2001,22(6):613—624. [4] 张鲁明,常谦顺.非线性Schrdinger方程的守恒数值格式[J].计算物理,1999,16(6):661—668. [5] 陈传淼.有限元超收敛构造理论[M].长沙:湖南科技出版社,2001,241—285. [6] 汤琼,陈传淼,刘罗华.常微分初值问题的间断有限元的超收敛性[J].株洲工学院学报,2004,18(2):30—32.
计量
- 文章访问数: 2680
- HTML全文浏览量: 137
- PDF下载量: 739
- 被引次数: 0