Pressure and Pressure Gradient in an Axisymmetric Rigid Vessel With Stenosis
-
摘要: 基于对Karman-Pohlhausen方法的改进,运用非线性多项式拟合和数值积分,导出了刚性轴对称狭窄管内压强及其梯度的轴向分布,讨论了该分布与雷诺数和狭窄管几何形状之间的关系.结果表明随狭窄度和雷诺数的增加,压强及其梯度在狭窄区域的振荡会迅速加剧,并逐渐导致舒张区出现负压强.尤其在狭窄的轴向区域变宽时,舒张区的血流状态会受到较大影响.在高雷诺数和重度狭窄时,理论计算与过去的实验结果基本一致.Abstract: Based on an improvement of the Karman-Pohlhausen's method,using nonlinear polynomial fitting and numerical integral,the axial distributions of pressure and its gradient in an axisymmetric rigid vessel with stenosis were obtained,and the distributions related to Reynolds number and the geometry of stenotic vessel were discussed.It shows that with the increasing of stenotic degree or Reynolds number,the fluctuation of pressure and its gradient in stenotic area is intense rapidly,and negative pressure occurs subsequently in the diverging part of stenotic area,especially the axial range of stenosis extended,the flow of blood in the diverging part be more obviously changed.In higher Reynolds number or heavy stenosis,theoretical calculation is mainly in accordance with past experiments.
-
Key words:
- rigid vessel /
- stenosis /
- pressure /
- gradient /
- Reynolds number
-
[1] 柳兆荣.心血管流体力学[M].上海:复旦大学出版社,1986,130—160. [2] Lee J S,Fung Y C.Flow in a locally constricted tube at low Reynolds number[J].Journal of Applied Mechanics,1970,37(1):9—16. doi: 10.1115/1.3408496 [3] 吴驰,柳兆荣.动脉狭窄对血流速的影响[J].上海力学,1995,16(3):192—199. [4] 丁光宏,柳兆荣.缓慢狭窄血管内血液流动的分析[J].生物力学,1989,4(6):30—39. [5] 吕岚,许世雄.局部缓慢狭窄幅度径向振荡弹性直圆管内脉动血流的压强和压强梯度分析[J].医用生物力学,1999,14(3):144—151. [6] Forrester J H,Young D F.Flow through a converging-diverging tube and its implications in occlusive vascular disease[J].Journal of Biomechanics,1970,3(3):297—310. doi: 10.1016/0021-9290(70)90031-X [7] 秦杰,刘辉,孙利众,等.刚性狭窄管内血流压力分布的研究[J].生物力学,1989,4(6):57—61. [8] 冈小天.生物流变学[M].吴云鹏,陶祖莱 译.北京:科学出版社,1980,273—294. [9] 陶祖莱.生物流体力学[M].北京:科学出版社,1984,530—538. [10] 沃德 切尼,戴维 金凯德.数值数学和计算[M].薛密 译.上海:复旦大学出版社,1991,396—424,163—219.
计量
- 文章访问数: 2641
- HTML全文浏览量: 180
- PDF下载量: 743
- 被引次数: 0