留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对偶二次规划的大型框架结构优化方法

隋允康 杜家政 郭英乔

隋允康, 杜家政, 郭英乔. 基于对偶二次规划的大型框架结构优化方法[J]. 应用数学和力学, 2006, 27(3): 342-350.
引用本文: 隋允康, 杜家政, 郭英乔. 基于对偶二次规划的大型框架结构优化方法[J]. 应用数学和力学, 2006, 27(3): 342-350.
SUI Yun-kang, DU Jia-zheng, GUO Ying-qiao. Method Based on Dual-Quadratic Programming for Frame Structural Optimization With Large Scale[J]. Applied Mathematics and Mechanics, 2006, 27(3): 342-350.
Citation: SUI Yun-kang, DU Jia-zheng, GUO Ying-qiao. Method Based on Dual-Quadratic Programming for Frame Structural Optimization With Large Scale[J]. Applied Mathematics and Mechanics, 2006, 27(3): 342-350.

基于对偶二次规划的大型框架结构优化方法

基金项目: 国家自然科学基金资助项目(10472003);北京市自然科学基金资助项目(3042002);北京市教委资助项目(KM200410005019)
详细信息
    作者简介:

    隋允康(1943- ),男,辽宁大连人,教授,博导生导师(联系人.Tel:+86-10-67392239;Fax:+86-10-67392399;E-mail:ysui@bjut.edu.cn).

  • 中图分类号: O343.2

Method Based on Dual-Quadratic Programming for Frame Structural Optimization With Large Scale

  • 摘要: 将准则法和数学规划相结合,对于不同的约束采用不同的处理方法:应力约束作为局部性约束,用0阶近似进行处理,借助满应力准则将其转化为动态尺寸下限;位移约束作为全局性约束,根据单位虚载荷法将其显式化,从而建立了满足应力和位移约束的框架结构截面优化的显式模型.为了提高模型的求解效率,根据对偶理论将大规模的框架结构优化问题转化为仅仅几个对偶变量的对偶问题,采用二次规划方法求解,算例证明该方法能极大的提高模型的求解效率.采用近似射线步既能减小计算量又能使迭代过程更加平稳,采用删除无效约束技术能减小优化模型的规模. 以MSC/Nastran软件为结构分析的求解器,以MSC/Patran软件为开发平台,完成了满足刚度和强度的多工况、多变量的框架截面优化软件.算例结果表明上述程序算法的高效性.
  • [1] Schmit L A. Structural design by systematic synthesis[A].In:Proceedings of the Second National Conference on Electronic Computation[C].New York: American Society of Civil Engineering,1960,105—132.
    [2] Prager W,Taylor J E.Problems of optimal structural design[J].Journal of Applied Mechanics,1968,35(1):102—106. doi: 10.1115/1.3601120
    [3] Prager W,Shield R T.A general theory of optimal plastic design[J].Journal of Applied Mechanics,1967,34(1):184—186. doi: 10.1115/1.3607621
    [4] Venkayya V B. Design of optimum structures[J].Computers and Structures,1971,1(1/2):265—309. doi: 10.1016/0045-7949(71)90013-7
    [5] Schmit L A, Farshi B. Some approximation concepts for structural synthesis[J].American Institute of Aeronautics and Astronautics Journal,1974,12(5):692—699.
    [6] Fleury C. Structural weight optimization by dual method of convex programming[J].International Journal for Numerical Methods in Engineering,1979,14(12):1761—1783. doi: 10.1002/nme.1620141203
    [7] Schmit L A, Fleury C. Structural synthesis by combining approximation concepts and dual methods[J].American Institute of Aeronautics and Astronautics Journal,1980,18(10):1252—1260.
    [8] Fleury C, Schmit L A. Primal and dual methods in structural optimization[J].American Society of Civil Engineering Journal Structure Division,1980,106(5):1117—1133.
    [9] Rozvany G I N, ZHOU Ming. COC algorithm, Part Ⅰ:cross-section optimization or sizing[J].Computer Methods in Applied Mechanics and Engineering,1991,89(1/3):281—308. doi: 10.1016/0045-7825(91)90045-8
    [10] ZHOU Ming, Rozvany G I N. DCOC: An optimality criteria method for large system. Part Ⅰ: theory[J].Structure Optimization,1992,5(1):12—25. doi: 10.1007/BF01744690
    [11] ZHOU Ming, Rozvany G I N.DCOC: An optimality criteria method for large system. Part II: algorithm[J].Structure Optimization,1993,6(4):250—262. doi: 10.1007/BF01743384
    [12] 隋允康.建模·变换·优化——结构综合方法新进展[M].大连:大连理工大学出版社,1996,87—177.
  • 加载中
计量
  • 文章访问数:  2773
  • HTML全文浏览量:  156
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-04-20
  • 修回日期:  2005-11-23
  • 刊出日期:  2006-03-15

目录

    /

    返回文章
    返回