留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

定常Navier-Stokes方程流函数形式两重网格算法的残量型后验误差估计

任春风 马逸尘

任春风, 马逸尘. 定常Navier-Stokes方程流函数形式两重网格算法的残量型后验误差估计[J]. 应用数学和力学, 2004, 25(5): 497-510.
引用本文: 任春风, 马逸尘. 定常Navier-Stokes方程流函数形式两重网格算法的残量型后验误差估计[J]. 应用数学和力学, 2004, 25(5): 497-510.
REN Chun-feng, MA Yi-chen. Residual a Posteriori Error Estimate Two-Grid Methods for the Steady Navier-Stokes Equation With Stream Function Form[J]. Applied Mathematics and Mechanics, 2004, 25(5): 497-510.
Citation: REN Chun-feng, MA Yi-chen. Residual a Posteriori Error Estimate Two-Grid Methods for the Steady Navier-Stokes Equation With Stream Function Form[J]. Applied Mathematics and Mechanics, 2004, 25(5): 497-510.

定常Navier-Stokes方程流函数形式两重网格算法的残量型后验误差估计

基金项目: 国家自然科学基金资助项目(50136030;10371096)
详细信息
    作者简介:

    任春风(1972- ),女,河南人,讲师,博士(E-mail:chfenren@yahoo.com.cn);马逸尘,教授(联系人.Tel:+86-29-82660051,Fax:+86-29-82668559;E-mail:ycma@mail.xjtu.edu.cn).

  • 中图分类号: O357.1;O241.85

Residual a Posteriori Error Estimate Two-Grid Methods for the Steady Navier-Stokes Equation With Stream Function Form

  • 摘要: 运用七种两重网格协调元方法得出了不可压Navier-Stokes方程流函数形式的残量型后验误差估计.对比标准有限元方法的后验误差估计,两重网格算法的后验误差估计多了一些额外项(三线性项).说明了这些额外项在误差估计中对研究离散解渐近性的重要性,推出了对于最优网格尺寸,这些额外项的收敛阶不高于标准离散解的收敛阶.
  • [1] Ye Xu.Two-grid discretion with backtracking of the stream function form of the Navier-Stokes equations[J].Appl Math Comp,1999,100(2/3):131—138. doi: 10.1016/S0096-3003(98)00024-1
    [2] Layton W,Ye X.Two level discretion of the stream function form of the Navier-Stokes equations[J].Numer Funct Anal And Optimi,1999,20(9/10):909—916. doi: 10.1080/01630569908816931
    [3] Fairag F.A Two-level finite element discretization of the stream function form of the Navier-Stokes equations[J].Comput Math Appl,1998,36(2):117—127. doi: 10.1016/S0898-1221(98)00123-0
    [4] XU Jin-chao.A novel two-grid method for semilinear elliptic equations[J].SIAM J Sci Comput,1994,15(1):231—237. doi: 10.1137/0915016
    [5] XU Jin-chao.Two-grid finite element discretizations for nonlinear PDE's[J].SIAM J Numer Anal,1996,33(5):1759—1777. doi: 10.1137/S0036142992232949
    [6] Layton W.A two-level discretization method for the Navier-Stokes equations[J].Comput Appl Math,1993,26(2):33—38.
    [7] Layton W,Lenferink W.Two-level Picard and modified Picard methods for the Navier-Stokes equations[J].Appl Math Comput,1995,80:1—12.
    [8] Layton W,Tobiska L.A two-level method with backtracking for the Navier-Stokes equations[J].SIAM J Numer Anal,1998,35(5):2035—2054. doi: 10.1137/S003614299630230X
    [9] 任春风,马逸尘.Navier-Stokes方程流函数形式两重网格算法的误差分析[J].应用数学和力学,2002,[STHZ]. 23[STBZ]. (7):689—696.
    [10] Verfürth R.A review of a posteriori error estimates for nonlinear problems, Lr-estimate for finite element discretization of elliptic equations[J].Math Comp,1998,67(224):1335—1360. doi: 10.1090/S0025-5718-98-01011-4
    [11] Volker John.Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations[J].Applied Numerical Mathematics,2001,37(4):503—518. doi: 10.1016/S0168-9274(00)00058-1
    [12] Angermann L.A posteriori error estimates for FEM with violated Galerkin orthogonality[J].Numer Methods Partial Differential Equations,2002,18(2):241—259. doi: 10.1002/num.10005
    [13] Clément Ph.Approximation by finite element functions using local regularization[J].RAIRO Anal Numer,1995,9(2):77—84.
    [14] Ervin V,Layton W,Maubach J.A posteriori error estimators for a two-level finite element method for the Navier-Stokes equations[J]Numer Methods Partial Differential Equations,1996,12(3):333—346.
  • 加载中
计量
  • 文章访问数:  3371
  • HTML全文浏览量:  196
  • PDF下载量:  626
  • 被引次数: 0
出版历程
  • 收稿日期:  2002-06-03
  • 修回日期:  2003-12-03
  • 刊出日期:  2004-05-15

目录

    /

    返回文章
    返回